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IN VERY-LARGE-SCALE INTEGRATED CIRCUITS

Chen-Pins Yuan, Ph.D.
4. Department of Electrical Engineering

University of Illinois at Urbana-Champaign. 1983

The increased complexity of the very large scale integrated cir-

cuits (VLSI) has greatly impacted the field 
of coputer-aided design

(CAD). One of the problems brought about is the interconnection

3 ~,.problem.

In this research, the goal is twofold. First of all, a mote

9 accurate numerical method to evaluate the interconnect capacitance.

includlins the coupling capacitance between interconnects and th~e

fringing, field capacitance, was investigated, and the integral method

~ was employed. Two FOR7RAN programs "CAP2D" and "CAP3D based on this

method were developed. Second. a PASCAL extraction program

- emphasizing the extraction of interconnect parameters was developed.

It employs the *cylindrical approximation formula" for the self-

capacitance of a single intercounect and other simple formulas for

the coupling capacitances derived by a *least square method". The

: :,~ exractor assumes only Manhattan geometry and P6105 technology.

Four-dimnsional binary search tress are used as the basic data

structure
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INTRODUC!ION

* The advent of very-large-scale integrated (VLSI) circuits as a

result of rapid progress has greatly impacted on the various aspects

in microelectronics. For example, as feature dimensions approach the

submicron range, the "short-channel effects" dominate the physics of

the devices. This has brought forth more research and studies into

.p -. device physics, processing technologies, material science, etc. On

the other hand, the exponential growth of IC complexity may push to

the extent that the future progress in circuit integration will no

" "longer be limited only by technology, but also, and to a much greater

extent, by our ability to reduce the astronomical design time. This

--) concern has spawned research and studies in computer-aided-design

(CAD), computer architecture, design methodology, design automation,

etc. C1-49]. All these efforts are aimed at further advancing the

-,progress in microelectronics that we have enjoyed for the past two

decades. Hopefully, through these studies and with the computational

power VLSI circuits have brought us, we can "bootstrap" ourselves to

-. , the next generation of technologies.

A comprehensive CAD system consisting of various tools has

become indispensable in VLSI circuit design. A part of the CAD sys-

. tm is design verification which shows that a given mask geometry

will perform the desired digital functions as originally designed.

.I-
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Extraction, the first stop in design verification, transforms the

geometric information on the masks into circuit information. After-

wards a comparison can be made with the original design, or a circuit

simulation can be performed to check the responses of the circuit.

One of the problems that the increased complexity has brought

about in CAD is the interconnection problem. Not only does the rout-

ins among a myriad of devices on the chip become complicated, diffi-

cult and time-consuming, but also the electrical parameters of these

very interconnects have gradually grown into an integral part of the

circuits. The increased complexity has augmented the lengths of

interconnects on the chip. Moreover, the reduced dimensions of the

interconnects themselves increase the resistances of the lines, and

the fringing capacitances are no longer negligible. Consequently, it

is necessary to include these interconnect parameters in the circuit

model. It is on this aspect that this thesis concentrates.

First of all, an equivalent circuit model for the interconnects

on the chip has to be established. A T-type lumped circuit model is

used in this thesis for the interconnects assuming silicon technol-

ogy. In Appendix A, criteria for the validity of the lumped circuit

model are derived from transmission line theory. It is shown that the

lumped circuit models are generally applicable under the present

technologies.
'S.

In the first part of the thesis. a more accurate account of the
a.

interconnect capacitance by numerical methods is considered. Both

p" the differential method, e.g., the finite difference method, and the

"".-.
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integral method (by way of Green's functions) have been studied.

• 11 Based on the applications of both methods to solve various problems

in the literature [2-10], combined with the experience in this study,

it was found that the integral method seems to offer more advantages

in the flexibility of programming and in computation time. There-

fore, it was employed for the numerical computation of two- and

three-dimensional interconnect capacitances. Basically the method

follows the "method of moments" proposed by Harrington [11] and is

similar to those in (8-10]. Both testing functions and basis func-

tions are chosen the same as pulse-type functions, which are con-

stants over the subdivisions, and variable-length subsections are

" divided according to the roots of Chebyshev polynomials. It was

found that this approach offered more accuracy than a comparable

.. ,~ number of constant subdivisions or using delta-type testing func-

iA tions, and the positive-definiteness of the resulting kernel matrix

* also guaranteed a solution. Some results will be presented in

Chapter 2.

-Next. with a view to easily incorporating these capacitances in

*-/ the extraction program for design verification, simple approximation

formulas were sought. An approximation formula for the self-

capacitance of a single interconnect was first derived. It is based

on the known expression of the capacitance of a cylinder over a

ground plane. Employing this expression to approximate the fringing

part of the self-capacitance, we have a reasonable approximation for-

mala with an accuracy within 10% of the numerically computed values,

'p
"o'

'- - . - . p ' . .o . , "p -j - - - . - . .. . . . •. .• . . - . . - - - . ..
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and it is named "cylindrical approximation formula". As to the cou-

pling capacitances between interconnects, a "least square fit" method

on the data obtained from the numerical computation was employed to

find approximation formulas. A few formulas have been obtained for

different interconnect configurations, e.g., coupling capacitances

'.5.

between two parallel interconnects or two p. sndicular cross-over

lines.

The second part of the thesis is mainly incerned with the

extraction program. It was intended, if possible, to be part of a

hierarchical CAD system which supports a number of functions at each

level in the design hierarchy with different tools. Hence, the out-

put form of the extractor is in a SPICE input compatible format such

that the circuit simulation can be performed without the data conver-

sion. The basic data structure in the extractor is 4-d binary search

trees of geometrical rectangles on the masks. The output includes

not only the pertinent information of transistors, e.g., channel

width and chne length, but also the parameters of itroncs

The resistances and the capacitances, both self- and coupling capaci-

tances, are reported.

In summary, Chapter 2 focuses on the numerical computation of

the interconnect capacitance, both in two and three dimensions. it

comprises the detailed formulation of the Green's functions, the

even-odd analysis to find the coupling capacitances in multi-

conductor cases, the integral method and the comparison with the dif-

ferential method, and a few examples. A user's manual for the pro-

S '..-- . - . S S . . S* S S S -



I.- grams "CA.P2D", "CMPD" which execute the aforementioned numerical

computation is described in Appendix B. Chapter 3 covers the approx-

*imation formulas of capacitances. The "cylindrical approximation

formula" is derived, and other approximation formulas for the cou-

pling capacitances are also discussed. In Chapter 4. the network

extraction program's data structure and the procedure of extracting

transistors and interconnect parameters are detailed; its charac-

teristics, limitations and some examples will also be discussed.

* Finally. the conclusions are in Chapter 5.
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,
NUMERICAL COMPUTATION OF ITrMCONNECT CAPACITANCE

",._ 2.I. Introduction

The present very large scale integration circuits lead to very

large and complex systems with small physical dimensions. Not only

do the devices have small dimensions which require special attention.

but the interconnects also become important and have to be reckoned -"

with in the circuit simulation. A better understanding of the

,A
electrical characteristics of the.interconnect, especially the caps-

citance, is essential in the design and analysis of today's

integrated circuits.
*5"T

As a general rule of thumb, the highest frequency components "

contained in the signals in most present large scale integrated cir- - -

-.

cuits correspond to wavelengths well exceeding the physical dimen-

.. sions of the circuit elements. Hence, lumped circuit models can be

used for the electrical analysis of the circuits. G. Bilardi et

l. (12] evaluated various circuit models for interconects in VLSI -

circuits and it was concluded that both current and the projected

silicon technologies in the near future fall within the realm of the

capacitance model. That is to say that a dispersive line can be

replaced by a capacitance proportional to its length. From another

4."- point of view, the lumped circuit model can be considered as a

o.. 4,*

... ~.4... 4.-.............. . ...... .......-..- , ...........,.
' .'" ' ..'l.' , .' .;. . - . , • l - l- ,. -. . . . . .. , . .. _ . .. .. . .
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first-order approximation of the transmission line model as discussed

in Appendix A.

Another important aspect in the electrical analysis of the

integrated circuit is the 'general impedance level". It is defined

.;.. in [131 as the lossless characteristic impedance of the average con-

nection in the system. Since most digital integrated circuits are

based on MOSPET devices which are typically of higher impedance than

the general impedance level, voltage and charge become the "state"

variables in the analysis. Consequently, capacitance emerges as the

dominant circuit element. The deciding factor of the performance of

most digital circuits is the time delay through the system, and

interconnect capacitance certainly plays an important role.

A cross-sectional view of a typical integrated circuit is shown

in Fig. 2.1. Since the channel-stopping ion implantation is usually

Isituated beneath the field oxide where the interconnect is generally

placed, it can be considered as the ground plane as shown in the cos-

putation model in Pig. 2.2. In general cases, there can be three

' 'different dielectric media, and interconnects can reside inside the

oxide layer or the passivation layer as shown in Fig. 2.2. The top-

most layer is assumed to be always the free space. In order to

."reduce the computational effort, we can also consider the intercon-

neat capacitance in a two layer or a homogeneous medium if the layers

in question are thick enough. The following discussion of the numeri-

cal computational method of the interconnect capacitance is based on

this model as shown in Fig. 2.2.

.4
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a-i. Numerical Comtyutation Methods of Interconnect Capacitances

." The computation of capacitances has appeared in the past for

various applications, e.g., the calculation of the characteristic

impedance of microstrip transmission lines is one prime example (42-

45]. Though the emphasis and the assumptions are different in dif-

ferent applications, the methods are still applicable in the computa-

tion of interconnect capacitance. In summary, the available computa-

tion methods of interconnect capacitance can be categorized into

three types, namely: analytic, differential and integral methods.

The analytic method, in effect, can calculate the capacitance in

closed form and no numerical analysis or discretization is required.

This will be the subject of the next chapter so its discussion will

be deferred. In this chapter we will concentrate on the numerical

methods, i.e., the differential and integral methods.

Let us first consider the differential method. The finite
.

difference method for solving boundary value problems is the prime N

example of a differential method. It starts with Poisson's differen-

.- tial equation, defines the boundary of the problem in question, and

then sets up the boundary conditions. After solving all the poten-

tials on the grid points within the boundaries, we can calculate the

- charges on the surface of the interconnect and then the capacitances

accordingly. For example, the method employed in [2,3] can be

categorized as the differential method. It is generally easy and

straightforward to formulate. Multiple layers of media or irregular

boundaries can be accommodated without too much increase in

_*1
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p
computation. However, if the region in consideration is an open

.%'- boundary as shown in Fig. 2.2, a suitable boundary condition has to

be defined. In [2] a reflectiveW- or Neumann-type boundary coudi-

tion at a reasonable distance from the source was defined to simulate

* the open boundary. In [3] an ad hoc arrangement on the boundary

grids was set up in the numerical process to take care of the open

_ boundary. Though there are other ways to reasonably simulate the

open boundary, they may compromise the accuracy of the computation or

* increase the computation time. This is one disadvantage of the dif-

ferential method. Other disadvantages may be attributed to the

rather large system of linear algebraic equtions of grid potentials

and the difficulty of extending it to three-dimensional cases.

5 Depending on the grid and the regularity of the boundaries and the

, *, source regions, this matrix may not lend itself to some special tech-

niques in numerical linear algebra. Iterative methods like Gauss-

Seidel may be too time-consuming and slowly convergent. In three-

-. *dimensional cases, the number of discretized grids may be too large

to handle in the finite difference method.

On the other hand, the integral method starts with the Green's

""_ *" function of the Poissou's equation, and the integral equation of the

-5. *:convolution of the Green's function with the charge density function

-• is solved. Then the capacitances are calculated after the charge

densities on the interconnect have boon found. In [4] the Green's

function for two-dimensional interconnects in two layers of media was

, *derived, and it will be shown in a latter section. In [61 the

%.,
-Ve _

4,. " "5. '.". "'" -.','- , ", ,-, -'-,-'... ,""; ""'" . .- , ''.'.-",",'- -,."," '- ",'-.,",, ,,-"- . .. ,,'""9 . ., . . . % , , • f ._ . . - _ ". .
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three-dimensional Green's fuction wa formulated for the computation

of irregular conductors over dielectrics.

In comparing these two methods, the differential method can be

thought of as solving the problem *microscopically", and the integral

method as macroscopically'. Because the system of linear algebraic

equations generated in the finite difference scheme relates only

local neighboring points in the grid, the resulting matrix tends to

be large but sparse. The effects of the boundaries and the sources

on the grid potentials are reflected only after the system of equa-

tions is solved by, for example, the Gauss-Seidel method. While, on

the other hand, the effects of the boundaries are already

*integrated in the Green's function in the integral method; thus,

the region in question only concerns the source region, and the

resulting kernel matrix is small but full in this case. There are

other differences between these two methods, and they are summarized

in Table 2.1.

One of the important characteristics of these two methods is

that the capacitance computed by the integral method will be a lower

bound to the true value and that by the differential method will be

an upper bound. This is parallel to the computation of the charac-

teristic impedance of a waveguide discussed in [41]. where the varia-

tional properties of the two approaches were also discussed. As in

[41], it would be ideal to compute the capacitance twice, once by

each method and take the average. However, there may be too ucmk

oomputation involved this way. Besides, the accuracy of the results

,-,' ,,'./ .' '',',-.,;, ,, , :-. .___ .. ?,..;."- .'.. .. - ..... / ,..,'. ., .. ,. ,'... - ...- .-. . • .. ... o
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TABLE 2.1 Comparison of the Differential and Integral Methods.

Item of Comparison Differential Method Integral Method

Basic equation Poisson's differen- Greens function and
tial equation its convolution in-

be.bon stegral
"State" variable* Potentials Charge densities
Discretized region Large region enclos- Only the surface of

ing the source and the source region
the media around it

-- u- ultiple layers of Ear to accommodate Infinite summation in
media without too much in- Green's function

crease in computation causes a substantial
increase in computa-
tion

Multiple conductors Cannot take advantage• " sy to _ t ke advan!-
of the oven-odd modse of the even-odd
excitation, substan- mode excitation, and
tial increase in com- easy to automate the
putation; hard to au- input of the dimen-
tomato in programming sions and positions

of the conductors
Automatic mosh Sen- Harder to implemeat Easy to implement
oration in a proatsm
Three-dimensional Much more complicated Not too much more
case than two-dimensional complicated

counterpart
Solution method Solution of a large Moment method

linear algebraic
equation, i.e.,
Gauss-Se ide 1

Boundaries shape Can take care of more Rigid, regular boun-
irregular boundaries daries, at most slant
provided the grid is side walls and plane
refined enough interfaces

Open boundaries Same approximation or No problem with open
other mechanism has boundaries

S.... to be devised
Characteristics of Upper bound on the Lower bound on the
the result*o  true value true value

• State variable mans the unknown in the basic equation first was
solved by either the differential or integral method.

*e See Rof. (411 by Collin for a complete discussion.

Q...--
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can be increased by refining the grid in either method. In comparing

the pros and cons between these two methods, the integral method

seems to be the better choice, especially in the case of homogeneous

medium and multiple conductors. It is easy to program for multiple

conductors with diverse geometries and positions; the discretized

region only concerns the conductor surfaces, which reduces the number

of linear algebraic equations. More important, we can take advantage

of the LU factorization of the kernel matrix in solving charge densi-

ties for the multiple conductor case. However, two major disadvan-

tages of the integral method are in the cases of multiple layers of
.5o

media and irregular shapes of the interconnects and the boundaries.

If accurate numerical computation is imperative for those cases, the

finite element method, one of the differential methods, may be the.. ,' :.
only viable solution.

;9.

."9"

a... Formulation ot Multi-Condcto Cavacitance Comutation

In this section, a general formulation for computing the self-

and the coupling capacitances among multiple conductors is described.

Either the differential or the integral method has to be associated

in this frame of formulation to compute the capacitances. First the

general case of N conductors is derived, then two examples of N - 3

and N - 4 are shown. Special consideration is required for the case

N 4.

:.

'4



1.1..General formulation fr~Nconductors

Consider a system of N conductors over a ground plane as shown

in Fig. 2.3 where N - 3 is depicted. All the capacitances, both

self- and coupling, are shown. The algebraic relationship between

the charges Q, i-1,2...,N and the Potentials 01' i-l,2,...,N on the

conductors can be expressed as [14]

Q& CIZOI + C12(0 1-02) + ..... + Cin(01-0n)

0*S C21(0202) + C20 ........ . C2n(Os-On)(21

.; 
.-.

(2.1

0 =CnOn0i 9 2(0U-03) + + CnPi

Note that the potentials O's are referenced with respect to the

ground plane, and the capacitances are symmetric, i.e., C,

for 1 1 ioJ I No because of reciprocity.

An analysis named "even-odd mode analysis" is employed to solve

the capacitances C in Eq. (2.1). Different potential patterns
0~ ij

are first assigned on the conductors, even mode or odd modes, then

the corresponding charges can be expressed algebraically in terms of

the capacitances as will be shown in the N - 3 and N - 4 examples.

Solving for the charges nuerically in the respective modes by either

the differential or the integral method, then we can find easily all

thI caaia

,* 
.

. . ., . . . . .

. % " 
..*
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C2 2 "

J33-

.1*,

133

:.GROUND PLN -."
/ /

C 
03

Ii , Figure 2.3 Multi-Conductor system. (N = 3 in this case).

22-.E J''' 444... ~ ~ . - '~

~ .***' ~ ~ C14



17

(i) Even mode In the even mode the potentials are assigned as

01 0 n - 1. From Eq. (2.1) the self-capacitances can be
--. ( -

written as C i1i,2,.. ,N. The superscript on the charges

indicates that those charges are evaluated under the even-mode poten-

.. tial pattern. All the self-capacitances are determined by this

even-mode excitation.

Since there are N(N-1)/2 coupling capacitances left to be

determined, it is necessary to generate the same number of indepen-

dent algebraic equations from the odd-mode potential patterns. It is

:,.., a matter of choice to assign these odd-mode potential patterns. A

- systematic procedure is used here. Except for the case N - 4, the

procedure employed here produces a system of N(N-1)/2 linear indepen-

dent algebraic equations which can be programmed easily and then

solved uniquely for the coupling capacitances.

(ii) Odd mode 1 : the potentials are assigned as , 02 = 1,

and all the other potentials equal -1. Solving Eq. (2.1), we have

--.. .. ) = C n

- C11 + 2(Cja+C 4 +.**1Cn)

)  C23 + 2(Css+C2 4+.... +C )
2n

-'..• .'-The sum of the above two equations is chosen to be one of the N(N-

1)/2 independent equations. Since C1 1 and C 23 have been found in the

even-mode analysis, the sum of the two equations can be expressed as

• 
oi

..................................... *..I*..
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C1 3 + C1 4 + .. + Cln + C2 3 + C34 + +. C 2

-. - 0.5(Qj' + - ~ ~)(2.2)

The superscript 1 on the charges here indicates the first odd-mode

excitation.

Other odd-o patterns can be obtained as in (ii) by assigning

two of the N potentials 1 volt, and all the other potentials -1 volt.

Since there are totally C(N.2) -N(N-1)/2 combinations of this type,

a total of N(N-1)/2 linear algebraic equations as Eq. (2.2) can be

N generated. It can be shown that the determinants of these systems of

algebraic equations are nonzero for N -3 to 10 except N - 4. So the

linear independence is achieved and a unique solution is guaranteed.

First Eq. (2.1) is rewritten in the following form for N -3.

Q- C1101 + C13(0 1-02) + C13(0 1 -02) (2.3a)

Q3 C13(Os-0 1) + C23O, + C23(02 -03) (2.3b)

Q3 C 5(os-'01) + C,,(03-0,) + C,,P, (2.3c)

The even- and odd-mode excitations are listed as follows
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()Even made let 01 =02 Ol, 1 then we have

Ce CI Q(e) CS (e)' . 11 '* l ss ; C; -

(ii) Odd mode 1 : let 0, - 0, " 1. and Os - -1, then we have

c, + Cz,, - o.(Qi + Q,') Q Q1e) - Qe))

(iii) Odd mode 2 let 01 0, - ,and 02 -1, then we have

C1  , .(3) + Q(Z) -Q(G) -Q(*))

(iv) Odd mode 3 : let 03 - 0s - 1 and 01 - -1, then we have

C13 + CIS O.S(Qz' ~)-~e ~)

It can be easily shown that the determinant of the system of the

above three linear algebraic equations from (ii),(iii) and (iv) is 2.

-. -, .

Bence, the coupling capacitances Ca., C1, and Ca. are solved in terms

C., - c. ~ (.' e ,

of: th orsodigcagsa

V.,

* .*....o. .he €o- e po* -n. cha ses as

• ~ ~ ~ ~ ~ a 0.i.' ::c, .o.(Q(s -Q(1)+'(S)-Q(1)-, ( .-s .2.Q,. . (2.4a)

CIS .- Q S .)-2 *
S "(2.4b)
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C33 0. 5(, ( ) ). 2)_nlss)+Q(3.) Q(2) ,(e)
Csa - 0 (2.4c)

Note that the subscript i on the charge Q(i) indicates the number of-

the conductor the charge is on, while the superscript j shows the

number of the odd-mode excitation this charge is extracted from.

Since there are other ways to define the odd-mode potential patterns,

the coupling capacitance formula in Eq. (2.4) is not unique. For

-". .' example, the capacitance formula in [5] is the result o another way

to specify the odd-mode excitation and not the same as that in

Eq. (2.4).

"!.3.j. Special consideration for N 4

The procedure described in Sec. 2.3.1 would result in a system

of linearly dependent equations for the case N - 4. Another way to

specify the even-odd mode excitation has to be devised here. The

even-mode excitation can still be the same, while some other odd-mode

excitations have to be defined. Instead of summing the corresponding

equations resulting from the odd-mode excitations as mentioned above,

they can be treated as separate equations. The resulting system of

linear algebraic equations can be shown to be independent. So the

even-odd mode analysis for the N - 4 case can be summarized as fol-

lows:

even mode :0 1  2 0 3s = = 4 =

z.

*1?'

4. . . .4 4.44 . 4
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Ca C 11 Q) cis QI)

CS, - Q!0) C4 4 aQ~e)

odd mode 1 :01 -03 0 D , 04 -

Q( ) isC1  + 2(C%3 +C1 4) (2.5)

C 1 + 2(C*3+C,4)(26

odd made 2 : ,-0, 0, 04 -

~C Q)-C 11 + 2(CX2+C1 4) (2.7)

/ 3) + 2(C%,+CS4) (2.8)

odd mode 3 :01-0 1,0 0. -

-I C11 + 2(C,3+C12 ) (2.9)

Q4' - 44 + 2(CX4+CS4) (2.10)

N Equations (2.5) to (2.10) constitute a system of six algebraic equa-

tions with determinant 4. Thus, the six coupling capacitances are
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uniquely determined. Note that if the general procedure in

Sec. 2.3.1 is employed, then the next odd-mode pattern will be

0s - - 1, 01 0 40 - -1. This is the exact complement to odd-mode

3 listed above. Consequently, the summing of the corresponding equa-

tions will result in an identical left-hand side from both excita-

tions and a dependent system of equations. For cases other than

N - 4, it is not possible to find pairs of *complementary excita-

tions"; hence, the equations are independent.

j-!- Integral Method

In this section, a detailed discussion of the integral method is

given. The method of moments (11] is formulated, *1ong with the

incorporation of the "even-odd mode analysis" discussed in Sec. 2.3.

The two- and three- dimensional Green's functions in multiple layers
54"

of media will be derived in the next two sections, and the detailed

expressions used to compute the kernel matrix will be given in

Appendices C and D.

ormu. F lation momen method

Assume that the Green's function to the Poisson's equation is - '4

expressed as G(r,r'). In the derivation of this Green's function,

the boundary conditions have already been taken into account. In

* analogy to system analysis, the Green's function can be considered as

the impulse response, and the potential in Poisson's equation can

thou be expressed as a convolution integral
.%.

-4.

d:.., -..., ... . .- . . . ...,. . -. .. . . .. t... . . . . . . ....- ,., ..,. .. - ..., .., .- .) ,< ,.. : - ,, - ,: ,,- ,
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06) f S d;' (2.11)

SIn Eq. (2.11) 0 is the potential and a is the charge density on the

source surface whose area is designated as S. Note that the dummy

variable in the integral r' indicates the coordinate of the source

region, and r is the observation point. Since potentials on the

1. J source region are decided by the even-odd node excitation as dis-

cussed in the previous section, and the Green's function is also

S -known, the only unknown variable in Eq. (2.11) is the charge density

function a(;'). Therefore, it is an integral equation, and the

method of moments can be employed to solve it.

SFirst, assume that the unkomwn charge density function a(r')

can be ezpressed in torms of a set of basis functions mj, i-,2,,N

as

a -e aioji(',) (2.12)

-5Thus, the unknown function a(re) is tranforued into N unknown cono-

stant coeffecionts ai. Substituting Eq. (2.12) into Eq. (2.11), we

have

:5. O(zIS - S m ~ i(;')G(;.Z') di' (2.13)

-L.1

Note that the observation point is chosen at the source surface S

over which the convolution integral is integrating, beca-Lso in even-

", -.. odd node excitation, the potentials are specified over S.
e'5

,..

* - S +" d. : .+ + r ,+ . + l.- I I
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Next, another set of testing functions ti, j-1,2,...,N is

defined. If the testing functions are chosen exactly the same as the

basis functions, the method is named Galerkin's method (11]. Defining

an inner product (f~g> f()S()dr for any two real functions f

and g, we then take the inner products on both sides of Eq. (2.13)

with all the testing functions ti, and have

f.) t= ()d i r' )Gt,')t(r)

J - 1,2',N (2.14)

Let us further simplify Eq.(2.14) by defining

b. - JOrI 1(J

and A ij is d;j d-i ) t ). 12,...,N' '" S S

Since b and A ij are scalars which can be calculated from the known

functions 0(:)l s ,  t (r), *i(r'), and G(r r'), Eq. (2.14) is

essentially a system of simultaneous linear algebraic equations. It

can be written in the matrix form Ax - b. The vector x is the un-

known coefficients a to be solved. Note that the size of the "ker-

nIl" matrix A depends on the number of basis functions. Usually it

is considerably smaller than that generated in the finite difference

scheme, so a direct method like LU decomposition or Gaussian elimina-

tion can be employed. It should also be pointed out that t.e

' o .. ~. . \.. * .. - *.*" - *-"' **. o *. *.* * -. •. . -. . ..-.-" -"-"% '%°-.. . 'f. . -. .'=e
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"kernel" matrix is usually full and those obtained by Galorkin's

method should be symmetric.

One of the main tasks in the above procedure is the choice of
U

the basis functions. As mentioned in [11], they should be linearly

independent, and the superposition of them as in Eq. (2.12) should

" "-- approximate the unknown function d(;) as closely as possible. Some

S.. -- additional factors have to be considered in the choice of both test-

in& functions and basis functions : (1) the accuracy of the solution;

(2) the ease of evaluation of the *kornelw matrix's elements, Aij;

and (3) the size of the matrix A and its behavior, whether it is

well-conditioned or not.

C For numerical computation of capacitances using the capacitance

model in Sec. 2.1, the basis functions and the testing functions are.5

chosen the sane as "pulse" functions which are constant over the

subareas on the conductors. In other words, the surfaces of all the

conductors are divided into subareas and the charge densities over
5-.

-5 * these subareas are assumed to be constant. Then the above procedure

is adopted to solve for the unknown coefficients. The reasons for

using pulse functions are as follows : (1) they are linearly indepen-

dent of each other; (2) the charge density function can be reason-

ably well expressed in terms of then, provided that the subdivisions

are refined enough; (3) a closed-form expression can be derived for

* the double integral in the evaluation of the kernel matrix elements;

", (4) if the basis functions and the testing functions are the same,

the kernel matrix is not only symmetric but also positive definite,
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and this guarantees a well-behaved kernel matrix. In order to more

closely approximate the charge density function with the choice of

pulse-type basis functions, variable width pulses are also used. It

improves the accuracy compared with that of constant pulses with the

same number of subdivisions. In practice, those variable-width

subareas are chosen according to the roots of Chebyshev polynomi-

als [16], because the charges tend to congregate at the edges of the

conductors, and Chobyshev polynomials have smaller widths between

roots at both ends of the interval [-1,11. Additionally, an explana-

tion [10] based on expressing the kernel matrix resulting from

Galerkin's method as a quadratic form of energy proves that it is a

positive definite matrix.

a1.4.. mi ethod and eve-p_4 !ode analysis

A In this section, we show the incorporation of the integral

method with the even-odd mode analysis in the case of a multi-

conductor. Let us continue with the three-conductor example given in

Sec. 2.3.2. Assume that the number of subareas on these three con-

ductors are n, nz, ns, so that the total number of subareas

N - nl+us+ns, then Eq. (2.12) can be rewritten as

-% I

ILI n,+ns N

OW a ioi(;') + Giw 1 (r') + MiWi(r)
i-1 i-nl+l i=n1 1++

Since Galerkin's method is employed, the testing functions are the

same as the basis functions, t.(r) wj(r), -,2,''',N, and

Eq. (2.14) becomes
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JS 31r G

i-i s1  s1

+ if dJ 4 d;'wi(;r)G(Er')w

iinu1.j I Sa

+ I Ji drf dDDG~,I(

ii3 +34. Si S

aa

J0+) Gr)d -3

1-1 l +1  S1  1a

-4 ~. + ~ ~ r drj r)G.;w,)

iin 1 +3 2+1 Sa Ss

w(r)d: - Q JS d;fS d;'Ni(;')G(;,;) 1G ca

+I a
*2 

ifdfd

i'I~ s



+ djf drf dr'Oi(;')G(rer')Wj(r)

S5  5,

where Sit, Sa and Ss are respectively the areas of the three-conductor

surfaces. Note that for different potential patterns, only the

potentials at the conductors are different, i.e., only 0(0)1SI

O~r18 , and DWIS1  in the above expressions are changed. This

corresponds to only changes in the right-hand side vector b ot the

matrix equation Ax -b. As an example, for the even and odd modes

specified in Sec. 2.3.2. the b vectors are

b:n. for the even mode,

and for the three odd modes,

is3 1 + NJ OI Jswn+ to JS 1L

'S, 1 f 1 1J uul

On the other hand, the kernel matrix A only concerns the Green's
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1' function and the basis functions, and it stays the same for different

even-odd mode excitations. This is one of the important advantages

of the integral method. Because the evaluation of the kernel matrix

C2 elements Aij always is the most computationally intensive, we have to

compute it only once, and LU factorize it only once, then use back-

ward substitution to find the charge densities corresponding to b,

b2, and b, as listed above. If the differential method is used, we

have to essentially solve four boundary-value problems, and cannot

take advantage of the evow-odd mode excitations as above. From this

point of view, the integral method is better in the case of multiple

.* conductors.

.14. Derixa&n =1 To-Dimensional Green's Function

Two-dimensional Green's functions to Poisson's equation in a

homogeneous medium or in two layers of media have been derived in

(4.14], and they are given here for reference; on the other hand, we

will concentrate on the derivation of the three-layer case in this

sect ion.

.14.1. onoteneous iodiua

" ,Consider a unit line charge at (x',y') in a homogeneous medium

with dielectric constant a, and the ground plane is at y 0 0. Then

the Green's function is

'I@.

o .. '
• " o- .-.-..- . . , • -•-.. .
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3' 2G;, y~~2ys (z--') i+(Y'+y) (

Note that the logarithmic function in the above expression character-

izes a two-dimensional line source, and the complementary terms of

y-y' and y+yl reflect the consequence of the source and the image

across the ground plane.

2.1.2. Two layers of media

Let there be two layers of media over the ground plane as shown

in-Fig. 2.4. The first layer has a thickness h over the ground plane

and a dielectric constant s. The second layer on top of the.first

one has a dielectric constant ss . There are four subfunctions asso-

ciated with the Green's function depending on the relative positions

of source point (x',y') and observation point (x,y) namely:

G1 1 (x~ylz',y'), G2.(x.ytx',y'). Gss(x.ylx',y') and G1 2 (x~ylx',y').

The first digit of the subscript specifies the region where the

observation point resides, and the second digit indicates the posi-

tion of the source point. This convention will also be used for

other subfunctions of other Green's functions discussed later. These

feur subfunctions have been derived by the method of multiple reflec-

tions across the ground plane and the interface between the two media

[4]. They are listed as :

• , -S ' + . - +, . ' ' . . . ' ' ' , ; + +.., + ,, , .' 't , ,+ t ' , . . . . ., . - : • " . . - , . ' + '; + "+ '
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.. .

(z'y') LAYER 2

G2
22 'E2

- G12

o (x ,y) I LAYER 1

N 
41

GROUND PLANE

. U../. ./.

Figure 2.4 Derivation of two-dimensional Green's function
in two layers of media.

.'

U ..................
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8a1)k in1

"11x~ix'ya - ____ (x-x) +(y+y'2k h)

k- 26+61 (xx) +(yy2k

0 y h and 0 Y ~h (2.16a)

1 2
1 - 281) (x-x) (y+Y'+2kh)

G,(XIYIX' DY 1 ) ln -
6 s1ki

no 2 kinG 62+1 (x-XI) +(y-y'-2kh)

9-8 )k+l in x +Yy+2klh

no3kin 43 +41 (xx (y-y'-2(k-1)h)

0 h < yand 0 <h y' (2.16b)

1 - (X-X') +(Y-Y'+2khi)'

0< y Sh Y , (2-.16c)

G11%(x.Ylx'.Y*) -G12(X-yIXD,y') except

0 < yo5 h .~y (2.16d)
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9 Compared with the formula in Eq. (2.15), the above formulas basically

are still logarithmic-type functions with some modification due to

the two media. The infinite summation in the formula is a direct

result of the infinite reflections of images between the two infinite

parallel planes.

'.4.i, Three layers of media

The method of multiple reflections employed in [4] to derive the

Green's function for two layers of media is too complicated to formu-

late the three-layer case. Hence, another method of boundary match-

ing in the spectral domain [19] is employed instead.

As shown inFig. 2.5, the dielectric constants of the three

layers of media are sa, 8., and so. The outermost layer is assumed

to be free space always, and the interconnect will not reside in this

region. Thus, there are four subfunctions, G11 , G2 %, and Gil, Gaz,

to be considered. The convention on the subscript of those subfunc-

tions is the same as that discussed in the previous section. Let us

consider the case when source point (x',y') is in the layer cz, and

derive the subfunctions G2s(x,ylx',y') and Gis(xylx',y'). The other

two subfunctions can be derived similarly.

* "As depicted in Fig. 2.5, an artificial interface is drawn past

the source point (x',y') in layer e2, which increases the number of

regions to four. In analogy to Fourier analysis, assume that the

, . potentials in these four regions are

'I%

.4

..................... ' '
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LAYER 4

LAYER 3

LAYER 2

b (96 21

I LAYER 1
a (Xc,Y)

GROUND PLANE

J4 Figure 2.5 Derivation of two-dimensional Green's function in
three layers of umedia.
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03 *(z.Y) -fcos(k(x-z'))[a(k)sih(ky)]dk (2.17 a)

O~(~y)- Jcos(k(x-x'))Ea,(k)sinh(ky) + P3(k)cosh(ky)]dk (2.17b)

0 1 (x~y) -fcos(k(x-x'))Eas(k)sinh(ky) + fts(k)cosh(ky)]dk (2.17c)

- J.,Y c05(k(x-x'))[d14(k)e kyldk (2.17d)

* - Note that the ai W's and Pi(k)'s in Eq. (2.17) may be considered as

"4 the unknown spectral components of the corresponding potentials.

Because of the ground plane in region 1. potential D1 (xy) should be

zero at y - 0 and does not contain a cosh(ky) term. For the outer-

most region 4, e-ky represents a decaying wave in the open boundary.

At the interfaces between different regions, the potentials and

the corresponding "displacement vectors" Ds have to be continuous.

Hence, the boundary conditions can be written as follows

0~O1'ya- 'ua (2.18a)

y-a (2.18b)

-a '2 -
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031 (2.8c

$a ase- _ (- (2.18d)
Dy "Ya

ayb - 4yb(21.

as y*b 80 -1b (2.18f)
* Dy D

* Note that these six boundary conditions uniquely determine the six

unknown spectral components. a i(k)'s and Ai(k)'s in Eq. (2.17).

After some tedious algebraic manipulation, the spectral components

can be solved :*

-I 2 17 Y( 1 4-2k(b-y')) (2.19a)
ft(6I+a,) kD(k)

Q3(k) (1-41.cosh2ka))(1-4ie0-b

a, kD(k) (2.19b)

1 1 eOky'(Qisinh(2ka))(~a
-Dk -21c
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4,(k) - (sinh(ky')+4jsinh(k(2a-y')))(1+e
- 2 k b )

ffsa kD(k) (2.19d)

S-2kb

-Psk) (sinh(ky')+zsinh(k(2a-y')))(1- 1 e
- k )

R"2 kD(k) (2.19.)

-. 2 1
6 4 (k) = (sinh(ky')+4isinh(k(2a-y'))) (2.19f)

it( a z+ 92) klDlk )

V.."

where 4, - and 4 - -

8+61 80+8

4o,

and D(k) 1 - Cie-2ka - e-2kb + 4143e-2kb-a)

S ubsttuting Eq. (2.19) back into Eq. (2.17), we can obtain the

potentials in spectral integral form analogous to Fourier integrals.

7Since the source in the above derivation is in the layer a, the

potentials 01 and 0, both in layer as as a result of the artificial

interface introduced in the derivation, can be combined to form the

subfunction G2,. 01 is naturally the subfunction G21 .

Written in spectral integral form, 02, as an example, can be

" Vexpressed as

.cos(h(x-z'))
-,s(xy) = aos x-x))_( 1 -. -2k(b-y'))•

"-, 2Zese kD(k)

-i : ° -

i".-,...- - " - ." ." ...'.'-'%-. -. - -• -". " - - -."- " ."%" -" -'.-" ' " .""- %" ." '.''...'- '.-' '*.'2" 
"  
" , -"- '."-"" .• .'"'"-".'-'"6 r- ' , . . . ,, _ , ' ' ' '"'. - *° #'-. . -. - ' "..' .' ,- _ - . . '- ' - -' •'. . ."
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b > y a (2.20)

* . In order to "reverse Fourier transforuM Eq. (2.20), or integrate out

* the dusmV variable k, first the factor [DMk)V' is expanded in bino-

nial form as

[DMkJ (_1 )k(j)(n) .J-n+k Cn *-2kbn *-2k&(J-n--k)

j -0 n-0 k-O

Then substituting this binomial expansion into Eq. (2.20) and utiliz-

ing the following definite integral from [17]

co os(bx) dx -(112) In RoA>0D Roylo
x 77

we can integrate out the spectral variable k and express 0
5(xy) in

the space domain as

j n

4ts5 J-0 n-0O k-0

(x-x' (+I2n+&jkn)

(x-x') +(-Y+y'+Zbn+2a(j-k-n) a
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Cx-21) +(-y+y'a2bn+e2(j-k-n+l))z
+ 41 Inaa

(a-:') +(y+y'+2bn+2a(J-k-n-1))z

(a-:') +(-y-y'+2b(n+l)+2&(J-k-n))

(a-a') +(y-Y'+2b(n+1)+2a(J-k-n))"

(xza) s+(y-y'+2b(n+l)+2a(J-k-n-l))a
+ ~Iainaa

* Ca-a') +(-y-Y'+2b(n+l)+2a(J-k-n+l))2

0< y ,~y# b (2.21)

Because the constraint on 0 ,(zy) is a y' I~ y <b, and 02 has a

similar formula as that in Eq. (2.21), the combination of Ox and 0.

results in substituting absolute values for y-y' in the above

Eq. (2.21). The other subfunctions can be obtained in a similar

manner. In summary, we have the two-dimensional Green's function in

three layers of media as follows

inn

Ln k

(a-a') + Iy-y'1I+Zbn+2a(j-k-n))a
In a

(-a') +(Iy-y' +2bn+2a(j-k-n))

+ np.l +-yy12n+ajknl)

txxt 4(1-'+b+ajknl)
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(x-a') +(-Iy+y' I+2b(n+l)+2&( i-k-n))

(x-x') +(-1y-y' I+2b(n+l)+2&( i-k-n))1

(z-x')T '(y+y' i+2b(n+1)+2&( i-k-n-1))

+ ~ in (z~x,)+( iy-y' +2b(n+l)+2&(J-k-n-1))2

0~ y,y' a b (2.22s)

G1(xyx'y)-GX,(x,ylx'ayO) except (2.22b)

0< y# I a S y j b

Gia x ~ lz' y' - ~ ~ j (_i k~j n1 l n + k 4,n

a k1

(x-zl) +(Iy+y' I+2ba+2a( i-k-n))a

[ (z.'z) 1+(Iy-yD I+2bn+2&(j-k-n))2

+ 4a1 
in

(zz ( Iy-y' I+2bn+2a(j-k-a ))21

in(x-a') '+(Iy+y' I+2bu+2a(j-k-))

a., ~ ++ ina a-

CXx') +(-Iy-y I+2b(n+l)+2a( i-k-n))

*7I -4



41

a
"+--- ' 1 "ln (x-x') +(-Iy"y' +2b(n+l)+2a(j-k-n-l))

+ tits In (x-x') +(-Iy+y' I+2b(n+l)+2a(j-k-n+1))z

0 y,y, b (2.22c)

:" G13(x-y1x' Y') "'(-) k (  ) (n) , J-n+kC~n

2r(sz+s.) j-o n-O k-0

(x-x') +(Iy' +2bn+2a(j-k-n)n))
3

In I

(x-x) +(-Iy+y' I+2b(n+l)+2a(j-k-n))
1

"'",-,. "" + 4,, in,'
. ".'. ~~( x-x ') s+ ( I- l Y'+2b (n+l) +2&a(J-k-n) )

0 S y ( a I yl . b (2.22d)

ri Note that those expressions still retain the basic logarithmic

function as that in Eq. (2.15). With the pulse basis function, the

double integral in the evaluation of the kernel elements will result

in a closed form. The detailed expressions of these closed-form

evaluations are included in Appendix C. Furthermore, the complex

triple summation in the above formulas can be interpreted as the mul-

tiple reflections among the throe parallel planes, i.e., the ground

plane and two dielectric interfaces. The program which executes the

aforementioned procedure of the integral method is named "CAP2D and
ui

* ~ a user's manual for it is included in Appendix B.

*S
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J.§. Derivation oL Three-Dimensional ~Gee's Function

There are some circumstances in which the two-dimensional

analysis cannot satisfactorily compute the interconnect capacitances.

For example, the cross-over of two perpendicular interconnects on

different levels is one such example. Hence, the three-dimensional

Green's functions in homogeneous, two-layer and three-layer media are

examined in this section.

.a~i...Homogeneous medium

Consider a unit point charge at r'-(x',y'.z') in a homogene-

ous medium with dielectric constant a and the ground plane at z -0.

The Green's function to the Poisson's equation satisfying this bon,--

4. dary condition has been derived [6] and is written as

G(r,r') - 11 -( +(Z-z')'f1-1 2 
- p5+(z+z') ] -1/2) (2.23)

4n a

where p- (x-x') +(Y-Y')

Note that r -(x,y,z) and r' -(x'.y',z') are the observation and

the source point, respectively. The Core of the expression is a

function proportional to the reciprocal of the distance which is dif-

ferent from the logarithmic function in the two-dimensional case.

01I,
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a..Two layers mei

The basic principle used in the derivation of the three-

dimensional Green's function in multiple layers of media is similar

to boundary matching in the spectral domain as discussed in Sec. 2.5

for the two-dimensional case. The formulation had been introduced in

K [6J. For two layers of media, let the dielectric constant of the

P lover layer be 91 and the thickness be h. Assume that the ground

* .'..plane is at z -0, and the dielectric constant of the top layer is

aa. Utilizing the same convention as the two-dimensional Green's

function, the three-dimensional Green's function for two layers of

media is

41ta~r Us&5 n.O

- ~Rft4.I-z'4(n.1ldhz 1-'- .. r..a.. -l~

+ 4[pz+(z+z'-2(n+l)h) I~~

0 (z~~z' h (2.24a)

*. 4.4,)

4mea 41 
,, 

n
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+ [p+(Z+Z,+2nh)s]- 1 /2]

0 <h <z'O (2. 24b)

- ((;;, ) '[cpse(z-ze-2nh) ]-1/2
4nes 62+31 nmo

o0 z <h V~Z (2.24c)

- 1 2s,

G2,(r~- [p1+(zzza+2u11)f-1/2

0<:' <h z (2.24d)

where - (Z-Z') +( 10 r P p+(z-zl) and -

a 8

~4.L.Three layers oL media

* Consider the configuration in Fig. 2.6. The thicknesses of the

layers are a and b-a and the dielectric constants are a., as* and a,.

4.4/These parameters are the same as those in the two-dimensional case.
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Figure 2.6 Derivation of three-dimensional Green's function
in three layers of media.
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Utilizing one well-known Fourier integral [15,6]:

r fJ,(kp) *-klz-z'l dk (2.25)

where r -p 3 + C:-:', and I,(x) is the Bessel's function of first

kind order 0, we can derive the Green's function.

First, consider the case in which the source point resides in

layer a. and the subfunctions G1 2 and G22 are derived. As before,

the potentials in layers sea ezo BeLO are represented as Fourier

integrals:

1:.. - . Q~)3,kp~k(-z) dk

0 - fGa (r)r'. - J kIa
4xe, 0

r+9 f-~).kpzek(dk

+ fes k3e (kp)eak(z-z')dk]

0< a < z,: ze b (2.26b)

01 G3L(r,r') r T*~ k)jfk k(z-z')dk

9.7
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+ feTa(k)3,(kp)k~z-z')dk]

0 < z .~a and a Sz' 5b (2.26c)

where p2 xx) +(-y

The functions Q(k, ez(k), e1(k), Tz(k), and 'v1(k) are the unknown

spectral components to be determined by boundary matching. As in the

two-dimensional case, the exponential term a-~-)i ~ dictates a

decaying wave towards the open boundary in layer so; also, the abso-

lute value on z-z' is removed because z is always greater than z' in

this region. Note that the first term in 03 accounts for the singu-

larity of the source point in the same region. Because the relative

magnitudes of z and z' are not fixed in this x:egion, the absolute

* value is needed in the exponent.

As in the two-dimensional case, the continuity of the potentials

and the displacement vectors dictates the following necessary boun-

dary conditions

OiO -0 (2.27a)

-p-

S IL 9-1- - (2.27c)
az 8z
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05'Izb - OoeIzb (2.27d)

g,-I 8001(2.27.)
3 zb 6- i z z(b

Substituting Eq. (2.26) into Eq. (2.27), we can solve the five unk-

nown spectral components in Eq. (2.26). After some algebraic manipu-

lation° they are listed as follows

01 (k) - - -A ( e2k)(c _ek(b-z')) (2.28a)

8$

G = (k) - 1 j- e-2k(a-z)(l- *-2ka) + (1-02k)] (2.28b)

1 (k) - 2 -Ie-2ka(t -e2k(b-z')) (2.28c)

2* - 2kb- 2kz') (2.28d)

91+82

where A =- 43 - 4-2ka - 42k(b-2a) + 2k(b-)

and 42 42
P 2+61L0+63 

I-.

. . . . . . . . . .
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I Note that the function 2l(k) is not associated with the Green's func-

tion in question, so it is not listed above. Utilizing the binomial

- -expansion of A 1 and the following definite integrals (17]

J ex3*(Ax)dx -(a2 + 03)' Re(cz+ip) > 0

f ex cosh(Ax)30 (yrx) - . +f-)'+

Red > IReAI, T > 0

we can transform the Fourier integrals in Eq. (2.26) back into the

space domain in order to obtain the two subfunctions of the three-

dimensional Green's function in three layers of media as follows

G2 3 (~r')- ~(_.)nk(j) ( n.nj-k.
4ffz3r 4,r:1 j-m0 n-n0 k-0

[(p3+(2( (j-k)b+(2k-n)a)+z+z' )I]1"

+ Ep +(2((j-k+l)b+(2k-n)a)+z-z')) ]-1 /2

* - [p5+(2((j-k+l)b+(2k-n)a)-z-z'))3S]-1/2)

-1/

+ 4,4,11P +(.(-j-k l-b-(2k.u.-l-a--- - - 2
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+ [p5+(2((j-k+l)b+(2k-n-1)a)+z-z')) 31-/

- p3+(2((J-k~l)b+(2k-n+l)a)-z-z')) 31-1/2)]

0 a z b and 0 a zIb (2.29a)

G1 3 (rr') -~()kJ()f~k

2irs1+,) J-0 n-0 k-O

I ([p3+(2((j-k)b+(2k-n)a)+Iz-z' I))z]1
-P [p+(2((J-k)b+(2k-n)a)+Iz+z I))"]-1/2)

a 1/+ ([p +(2((j-k+l)b+(2k-n)a)-Iz-z' I)) I 2 )

0< zS a <b and0 a S zb (2.29b)

The other two subfunctions of the Green's function can be similarly

formulated and they are

_____ - - ~(_)k(j)(n),n~j-n+k
41ra3Lr 4neaL J-0 n-0 k-O

[cp1 (2(-(-kz'+(j-u+kb+(u-zka+z+z')) 1 /
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+&U ~ia +(2((jk)zu+(J-n+k)b(n2kl)a)+zzI))~/

.- 1/2

. p+(2((jk) z,+1jn+k)b+(_2k)a) z, )) I

+ _p3+(2(-(j-k)z,+(j-n+k+l)b+(n-2k)a)-zz))]-1/2]

0 <z <a (b and 0 z' a < b (2.29c)

p.? G11(rr') - Gia(rr') except

0 <z' a b and 0 < a j z b (2.29d)

It should be pointed out that the *core" function in the above

expressions is still the inverse square root function mentioned ear-

lier. Associated with the pulse basis functions in Appendix D, the

inverse square root function results in closed-form integration for

the evaluation of the kernel matrix elements. A detailed derivation

of these kernel integrals is included in Appendix D. The program

which implements the numerical computation of the three-dimensional

|''-. interconnect capacitances described above is named "CAP3D', and the
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user's manual for it is the same as the one for "CAP2D, and is

included in Appendix B with some examples.

1.7. Some Results of Two- a Throe-Dimensional Numerical Computa-

tion

2..1. Comparison of Iwo- and three-dimensional capacitance

In two-dimensional capacitance computation, the length of the

interconnect is assumed to be infinite; in other words, the calcu-

lated capacitance is the capacitance per unit length of the intercon-

nect. In comparison with the three-dimensional capacitance, as shown

in Fig. 2.7, the capacitances are plotted versus the "normalized"

length. Since the two-dimensional capacitances and the parallel-

plate capacitance are proportional to the length, they are linear
.I,.

lines in Fig. 2.7. As expected, the discrepancies between the

corresponding three-dimensional and two-dimensional capacitances are

diminishing as the length increases. Some of the difference may be

attributed to the "end effect" or the fringing-field capacitances at

the ends of the interconnect which are included in the three-

dimensional computation. Also, the difference between two-

dimensional capacitance and the parallel-plate capacitance is due to

the fringing-field capacitance at both sides of the interconnect

which had been taken into account in the two-dimensional computation.

Two cases of thickness are also considered in Fig. 2.7. In the

case of t/h 0 0, the interconnect is considered infinitesimally thin,
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and, naturally, the fringing-field capacitances from the side walls

are reduced and all the corresponding capacitances are smaller con-

pared with those of thickness t/h = 0.8. From this comparison, it

can be concluded that as the dimensions of interconnects are reduced,

.-'- the fringing-field capacitance does not decrease in the same propor-

*' " tion as the parallel-plate field capacitance. Thus, the fringing

capacitance gradually emerges as the dominating component in the

evaluation of the capacitances. Hence, more accurate computation is

needed to evaluate them in order to take all the capacitance com-

ponents into account.

S__.7,2. Couoling capacitance and slant side walls

Shown in Fig. 2.8 are the cros-sections of two interconnects.

: The self- and coupling capacitances with respect to the separation

"s and the pitch angle of the side walls *uL are given in Table 2.2.

First of all, it can be deduced from the table that the coupling

capacitance is inversely proportional to the separation, and the

self-capacitance decreases as the coupling capacitance increases.

,*.*.This effect may be attributed to the fact that the fringing fields on

the side wall are directed more towards the adjacent interconnect

instead of the ground plans as the separation decreases. Conse-

quently, some fringing-field capacitance in the self-capacitance

shifts to the coupling capacitance. However, as compared with the

,- differences in capacitances shown in Table 2.2, the coupling capaci-

tance increases more than the reduction in the self-capacitance.

"*1": -
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Figure 2.8 Two-dimensional,cross-sectional configuration of
two interconnects.
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TABLE 2.2 Self- and Coupling Capacitance vs Pitch Angle and Separation.

- pitch angle (.)

s/h 600 700 750 800 900

22.332 22.667 22.839 23.018 23.407
1.0 6.729 7.984 8.801 9.811 13.236

(4.266) (4.626) (4.813) (5.006) (5.426)

23.469 23.844 24.036 24.234 24.660
2.0 4.145 4.830 5.236 5.706 6.964

(3.129) (3.449) (3.616) (3.79) (4.173)

25.111 25.613 25.870 26.136 26.710
5.0 1.666 1.922 2.060 2.209 2.555

(1.487) (1.68) (1.782) (1.888) (2.123)

25.968 26.573 26.885 27.208 27.911
10.0 0.659 0.759 0.812 0.866 0.987

(0.63) (0.72) (0.767) (0.816) (0.922)

, The capacitances are in units of 8.854x10 Farad/cm,
and the dielectric constant of the homogeneous medium is 4.0.

00 The decrease in the self-capacitance as a result of the

adjacency of another interconnect. The reference capacitance
is the self-capacitance of a single interconnect.

-. Next the pitch angle seems to have a greater effect when the

separation is small. For example, at s/h - 1, the coupling capaci-

tance with a 900 pitch angle more than doubles that with a 600 pitch

*"""angle; whereas at s/h - 10, the difference in coupling capacitances

is about 50%. This is due to the fact that the closer the two inter-

connects, the more strongly coupled they are, and the more evident is
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the change in pitch angle. Since the design rules of the separations

' between adjacent interconnects are usually dictated by the considera-

tion for metal migration, it may not be necessary to consider the

pitch angle effect. However, this ability to take into account the

pitch of the side walls of interconnects is helpful if detailed

- .information is needed. Subsequently, in all further capacitance com-

putation of interconnects, a 900 pitch angle will be assumed.

,..: .. i. Comparison of knock-knee and cross-over confixurations

In the channel routing problem, there is some concern about

whether the knock-knee or the cross-over configuration will have

.-. smaller coupling capacitance. In Fig. 2.9 and Fig. 2.10, both the

knock-knee and the cross-over configurations of two interconnects in

€' different levels are shown. For the sake of simple computation, the

thickness of interconnects is assumed to be infinitesimally thin. As

discussed previously, if the thickness is included, the coupling

S ,"capacitance will be increased due to the increased side wall areas.

The calculated capacitances for these two cases are listed in

Table 2.3 to Table 2.6. For simplicity, both interconnects are

* assumed to have the same width and length. The parameter "1" is

defined comparably in both knock-knee and cross-over cases as shown

in Fig. 2.9 and Fig. 2.10. C,, is the self-capacitance of the lower

interconnect, and C22 is that of the upper one. More important, the

*0. , coupling capacitance between the two interconnects is C13 . Comparing

Table 2.3 with Table 2.4, or Table 2.5 with Table 2.6, it is apparent

that either the knock-knee or the cross-over configuration has very

-* °
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Figure 2.9 Knock-knee configuration.
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TABLE 2.3 Knock-Knee Capacitance.

(v1/h, - -h 1. hz/h1  2)

1/h1  2.0 3.0 5.0 10.0 20.0

CI21  6.65 9.03 14.20 27.87 56.00

C 23  5.59 7.32 11.08 21.22 42.47

C 1 2 2.06 2.68 3.42 4.13 4.52

TABLE 2.4 Cross-Over Capacitance.

(WI./h 1 - v/h 1  1. hl/h, 2)

1/h1  2.0 3.0 5.0 10.0 20.0

C11  6.92 9.44 14.72 28.73 57.40

C22 5.78 7.60 11.44 21.87 43.56

cis 2.29 3.15 4.19 5.29 5.95
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TABLE 2.5 Knock-Knee Capacitance.

(wI/h 1  wz/h 1 = 1, 1/h 1L 10.0)

h$/hl-1 0.5 1.0 2.0 5.0 10.0

C11  27.59 27.87 28.38 29.41 30.14

C22 22.98 21.22 19.38 18.49 18.20

- ,- 5.66 4.13 2.88 1.41 0.59

TABLE 2.6 Cross-Over Capacitance.

(w1/h" = wa/h 1 = 1, 1/h1 = 10.0)

h1 /h 1-1 0.5 1.0 2.0 5.0 10.0

CI.1  28.22 28.61 29.40 30.75 31.61

C22 23.56 21.78 20.41 19.4.8 19.27

C13  6.71 5.26 3.70 1.74 0.69

similar values of coupling capacitance between the two interconnects

in different levels. Therefore, it does not matter whether the chan-

nel routing problem is solved by the knock-knee or the cross-over

configuration from the viewpoint of the capacitance penalty.

,,.:- .. ~"
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In summary, the two- and three-dimensional capacitance computa-

tions can be applied to various interconnect configurations. As the

dimensions of the interconnects and the proximity between them become

smaller, not only the self-capacitances need more accurate computa-

tion, but also the coupling capacitances become more important. In

this chapter, the numerical computation of the interconnect capaci-

tances was discussed. Fortran programs "CAP2D and "CAP3D" were also

developed to implement the integral method discussed here. In order

to easily incorporate these capacitances into an extraction program,

some simpler closed-form formulas are needed instead. These will be

-. discussed in the next chapter.

0).2%

S.-..

ci!:&.Qc°".-2m :2 :: "
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CRAPTER 3

APPROXIMATION FORMULAS FOR INTERCONNECT CAPACITANCES

.14. Introduction

As the complexity of the present VLSI circuits increases, the

interconnect parameters have become more important in both circuit

design and circuit verification. In Chapter 2, numerical approaches

to the computation of interconnect capacitances were discussed. How-

ever, those computations are usually quite involved and require a

large amount of computation time. In extraction programs for design

verification, it is impractical to go through those computations for

every interconnect in the layout. Simple formulas, though not as

accurate as the numerical ,mputation, have to be derived and

employed in the extraction programs. From another point of view,

simple or approximate formulas can also provide some physical insight

or "guidelines" for the designers. Hence, designers can take the

electrical parameters of the interconnects into account in the design

process and reduce the number of design iterations. In general,

• =these approximation formulas can serve as useful tools in both design

and design verification.

*:*.-o. ..-. * <- .. .: K :...-
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.1.2. SeL-Capacitance

In this section, the approximation formulas for the self-

capacitance are discussed. The self-capacitance, by definition, is

the capacitance of the interconnect with respect to the ground plane.

It should be pointed out that the presence of other interconnects in

the vicinity will reduce this capacitance with respect to the ground

plane as discussed in Sec. 2.7, and shown in Table 2.2.

1.2.1. A review of simple formulas for self-cauacitance

The simple analytic formulas for the two-dimensional self-

capacitance have been discussed in the literature [20-23]. For the

sake of comparision and discussion, a general review of those simple

formulas is first given.

-1.-.1 1. Parallel le formula

The parallel plate formula is a fundamental expression for the

computation of capacitance. It can be written as

C - aw/h (3.1)

where a is the dielectric constant, w is the width and h is the dis-

tance from the ground plane to the plate. Note that the formula in

Eq. (3.1) is two-dimensional, and the capacitance calculated by it is

in units of Farads per-unit-length. Generally speaking, this formula

is applicable under the assumption that the thickness of the plate is

negligibly small and the width w is considerably larger compared with

the distance h. It can be considered as a first-order approximation

*1"; " " ,, '
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formula and it was used successfully for the calculation of intercon-

nect and gate capacitance before the dimensions became so small that

fringing capacitance was no longer negligible.

14".4. Thi_• . late, formula

It is known that the charges on a conductor surface will congre-

gate at places where there is a sharp curvature change , e.g., edges

and points. Hence, the electric fields at the edges are not constant

as in the middle of the plate as assumed in the parallel-plate for-

mula. Thus, it gives rise to the "edge effect" or fringing-field

capacitance of the plate. In [20] a general formula was derived from

the conformal mapping method to include the edge effect of infi i-

[ tesimally thin-plates. An approximate formula assuming that width w

is larger than the distance h can be expressed as

w 2h frw
C - a-[ 1 +-( 1 + ln- )], w>>h (3.2)

h irw h

The second term in the expression can be considered to account for

the fringing-field capacitance. As w is increased larger than h,

this term becomes negligible and the thin-plate formula Eq. (3.2), as

expected, reduces to the parallel-plate formula of Eq. (3.1).

1..1. .Chan' formula

Advancing one step forward, Chang's formula (21] furthermore

takes into account the edge effect and the finite thickness of the

[ ' ',. . -.-..-...-,-,.,. .,.,.-.-..-..,.-:.....................•,..............:....,.. .-... :,,-...,,,, /,,.
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plate. Utilizing the Schwartz-CI~ristoffel transformation of the con-

formal mapping method and an ingeniously contrived transformation

* function, Chan$ was able to derive an analytic formula for two-

dimensional self capacitance. It can be summarized in the following:

C - (2/ff)ln(2%b/Ra), v/h ,1 (33

luR - -1 (21v/2h) -(p+l)p /2tanh (p1 1 ) ln ((p-l)/4p)

1/2 1/2

1/2 -15 > v/h >

S.... 19 otherwise

I + (p+l)/20lnA

p (,rw/2h) + (p+l)/2[l + ln(4/(p-l))] -2p' tanh 1 p--

p-2- 1 + [(2B2_1) 2_1]Z/ I

B -1 + t/h

The parameters w,hs are as defined in Eq. (3.1). and 'It" is the

A-'-7
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I thickness of the plate. It should be pointed out that this formula,

though complicated, is rather accurate. In comparison with the two-

dimensional numerical computation [4], its percentage errors 4re all

within ±2% [21] for different combinations of w/h and t/h. Still

this formula is considered too complicated to be employed in the

extract ion programs.

- .. a. -lmasrv's formula

" , "In line with the idea to provide an easy, simple formula in the

preliminary design phase and in the CAD programs, another simple for-

mula [22] was proposed. It can be expressed as

w h t t w/2
C - s-C 1 + 2-n(l+ -) + 2-1n(l+ -- (3.4)

h w h w h+t

Note that the parameters are defined as before. Physically the

second and the third terms in the above expression correspond to the

capacitances resulting from the charges on the side walls and the top

wall of the plate, respectively. Since this is an empirical formula,

the factor 2 in front of the second and the third terms can be

@O1 adjusted empirically according to the experimental data or the data

-, from numerical computation for a better correlation with the "true"

S-' capacitance value.

All in all, the above formulas can be applied in the calculation

- ,of the self-capacitance in a homogeneous medium. Chang's formula is

.

.' ' ' " - . - ' • " . ' . -" " " " ' ," ' ' ' - , ' " " ' . " " " " % ' ' " 4 - ' ' t - ' ' , % , - , , ' ' , ' ', ' , . ' ' , . ' ' ' " "
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accurate enough but still too complicated to be incorporated in the

*-, extraction programs. Elmasry's formula is not sufficiently accurate,

S-thus, another approximate formula, the *cylindrical approximation

formula", is proposed.

1... Cylindrical approximation formula

44.-1. Formulation

'\ As a preliminary, let us consider the capacitance of an inter-

connect whose cross-section is a square with side t and a distance h

over the ground plane. It is known that the capacitance is deter-
U-.

mined by the geometric shape, the perimeter and the distance from the

ground plane. Hence, the capacitance per unit length of the square,

C5, will be a function of t and h. Since the capacitance per unit

length of a conductor over a ground plane with a circular cross-

section is given by the relatively simple expression [15]

2me
C c 2 1/2 (3.5)

d a(d -a
ln(

a

where "la is the radius of the circle, and "d* is distance from its

center to the ground plane, then intuitively, we might employ

Eq. (3.5) as an estimation for the capacitance C5  with a proper -e

choice of parameters. Next we examine a few possible choices for ..

these parameters.

',","V- -V .,-..'+.. " '-...-" " ",",-:' "-'.-. "" '. . .:. ..- : ,".";"'",".' "-. +-.".". -.-- - " "- *. - "'''-' '-'-.
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-HConsider the inscribed circle to the square; that is, a - t/2,

and d - a + h. Because like charges repel on the conductor, they

" will keep as far apart as-possible. Consequently, smooth surfaces

42 like the circle will have less charge accumulated near the ground

plane than the square which has sharp corners for the congregation of

charges. Also, the "inscribedO circle has a perimeter at compared to

a perimeter of 4t for the square. Due to this shape factor plus the

smaller perimeter of the circle, it is expected that the 'inscribed

" " circle approximation" will always underestimate the capacitance per
.e.

unit length of the square configuration.

Next lot us consider the conductor with a rectangular cross-

section, as shown in Fig. 3.1 with width w and thickness t. Also,

shown in Fig. 3.1 is a cylindrical conductor whose ends are circular

with a radius t/2. For this conductor the total "side-wall capaci-

tance" can be estimated with Eq. (3.5), where a - t/2 and

- d - t/2 + h. In the center part of the conductor, a uniform charge

distribution is assumed throughout the bottom side of the conductor,

so that the capacitance of this section can be computed with the

parallel-plate formula of Eq. (3.1). It was found by trial and error

*that the capacitance of the cylindrical conductor closely approxi-

mated the capacitance of the rectangular conductor when a section of

width t/4 was taken from each end of the rectangle and replaced with

a semicircular section o& radius t/2, as shown in Fig. 3.1. The

*q "total perimeter of the semicircular ends is at while the total perim-

*ter removed from the rectanngle is 3t. Thus, there is a close

! -'
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Figure 3.1 Conductor with a rectangular cross-section.
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U match. With the above assumptions and for the case w > t/2, the

capacitance per unit length of the rectangular conductor can be

estimated with the simple formula

w-t/2 2x

h ln(l+2h/t+(2h/t(2h/t+2))1 / s] ]i w > t/2
(3.6)

• . . ' -

When w ( t/2. it is not possible to remove sections of width t/4

from each end. Although this case is uncommon in integrated cir-

'. . cuits, it was found that a reasonable approximation to the capaci-

tance could be obtained by using the parallel-plate calculation for

-- the entire width and modifying the circular capacitance approximation

' / in order to account for the fringing capacitance and to maintain con-

tinuity with Eq. (3.6). The resulting formula for estimating the

total capacitance per unit length in this case is

4

w ,(1-0.0543t/2h)
C= - + + 1.47]. w < t/2

h ln[l+2h/t+(2h/t(2h/t+2))1 / a]

(3.7)

In both Eq. (3.6) and Eq. (3.7), the second term attempts to account4..

for the additional capacitance due to fringing effects at the edges

of the conductor. In the case of two layers of media, the first

term, parallel-plate term, and the fringing field term are weighed

w ..'. ""with different dielectric constants. This will be discussed later.

e,. -.. . ..--. . ..-....... -.. . . . . .-.- , . . - -. ........ .,:''....,i'.-;
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2•2_•2_• Results and comparison

Since the accuracy of Chang's formula has been established in

comparison with the two-dimensional numerical computation, the capa-

citance values generated by it are used as the "true" capacitance' in

subsequent comparisons. First of all, the normalized capacitances by

the "cylindrical approximation formula" are compared with those by

Chang's formula in Fig. 3.2. Those capacitances are normalized with

respect to the parallel-plate capacitance, and they are plotted in

Fig. 3.2 for t/h - 0.11 1, and 10. As w/h increases, all the normal-

ized values approach constant 1. In other words, the capacitances,

as expected, approach the parallel-plate capacitance when the width

is relatively larger than the distance from the ground plane. For A

t/h - 10, the cylindrical approximation is within 5% of the actual

capacitance, and for t/h - 1, the error can be as large as 10%, but

only for w/h <( 1. For t/h - 0.1, the error is within 20%.

Furthermore, for a more detailed comparison of various approxi-

mation formulas, the percentage errors of the capacitance values corm-

puted by the thin-plate formula, Elmasry's formula, and the cylindri-

cal formula, are plotted in Fig. 3.3, Fig. 3.4, and Fig. 3.5 for

t/h 0.1, 1, and 10, respectively. The referenced 'true capaci-

C tance is obtained by Chang's formula Eq. (3.3). Note that the thin-

plate formula and Elmasry's formula are logarithmic-type approxima-

tions, and the errors are relatively larger for smaller w/h. While

the cylindrical formula is a reciprocal logarithmic approximation,

the error trend is revex.id for smaller w/h. Hence, the error for

. . . . . . .. . , . . . .* , . . . . . . ,. .,.. . . , .. , . .. ,,,'
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Filure 3.2 Normalized capacitance comparison.
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the cylindrical approximation is bounded within a smaller range and

is more constant over the range. For example, at t/h = 1, the

cylindrical approximation has an error within +5% for w/h from 1 to

L 50. As for the other two approximate formulas, the errors are 30%

and 40%. However, for the extremal case, t/h = 0.1, the thin-plate

approximation, Eq. (3.2). generally has less error than the cylindri-

cal approximation. It may be inferred that, for this case, the

charges are distributed more on the bottom side of the interconnect,

so that the infinitesimally thin-plate approximation is more realis-

tic than the cylindrical approximation. Consequently, Eq. (3.2) is a

better approximation is this case. For general cases, the cylindri-

cal approximation formula compares fairly favorably with the other

approximate formulas.

3.;.1.1. Two layers of media

If the interconnect is situated within a passivation layer,

e.g., SiN, on top of the oxide, SiO 2 , then the difference of the

dielectric constants has to be taken into account in the calculation

of the capacitance. This can be accomplished by selecting different

weighting factors for the "parallel-plate" term and the "fringing"

term in Eq. (3.6) an Eq. (3.7). Consequently, for two layers of

"dielectric media, the total capacitance is

C sox[(parallel-plate term) + ravg (fringing term)] (3.8)
Box

.-where c (ox + eSiN) / 2

IC-
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In order to examine the errors, two-dimensional numerical compu-

tation, e.g., "CAP2", is performed to calculate the actual capaci-

tance. In this calculation, it was assumed that the passivation

layer is thick enough so that the field lines passing through the

outer boundary are negligible. Thus, the thickness of the passiva-

tion layer was considered to be infinite in the calculation of the

actual capacitance. The percentage error between this capacitance

and the capacitance obtained from the simplified formulas is shown in

Table 3.1. The cylindrical approximation means the formulas of

Eq. (3.6) and Eq. (3.7) are modified according to Eq. (3.8), and the

thin-plate approximation means Eq. (3.2) is modified according to

TABLE 3.1 Percentage Error in Capacitance Estimation with
Two Dielectric Layers.

L+--I

Percent Error
cylindrical approximation thin plate

w/h t/h -10 t/h 1 t/h 0.1 t/h 0.1

1.0 -5.26 5.82 -18.24 -28.12

P * 2.0 -5.74 0.50 -20.73 -16.53

10.0 7.06 -6.40 -16.30 -4.63

-. The dieletric constants are ax 3 aSiN 7

-. -. .. .. ., ..- . -. -. .. - --
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Eq. (3.8). Note that the errors of the cylindrical approximation at

t/h - 0.1 are relatively large compared with those of the thin-plate

approximation, except at w/h - .1. As discussed previously, modified

Eq. (3.2) is a better approximation than the modified formulas of

Eq. (3.6) and Eq. (3.7) in this case. However, for the other cases,

t/h - 1 and 10, the percentage errors of the cylindrical approxima-

tion are well within +10%. Despite the already-existing errors in

Eq. (3.6) and Eq. (3.7), the simple weighting factors in Eq. (3.8)

approximate the case of two dielectric layers satisfactorily. There-

fore, the simple formulas, except Eq. (3.3), may also be applicable

for the capacitance of interconnect in VLSI circuits when the pas-

sivation layer is taken into account.

'.,.,.., Cylindrical avrroximation on the overlap capacitance

The overlap capacitance between the gate and the source or the

gate and the drain in an MOS device is an important parameter in cir-

cuit simulaton. It affects the MOS model in the circuit simulation

program and impacts on the circuit response. Typically it was

estimated by the parallel-plate formula as Eq. (3.1). As a side

topic, it was found out that the cylindrical approximation formula

can also be applied to the estimation of the overlap capacitance.

A simple model and formula were derived for the overlap capaci-

tance in an MOS device in 125]. Assuming the side walls of the gate

O. " and those of the source are vertical boundaries, as shown in

Fig. 3.6, the simple formula derived in [25] was expressed as

7 .-
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Figure 3.6 Overlap capacitance model.
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m Note that "t o" is the gate oxide thickness, Od" is the overlap

width between the gate and the source, "x " and "xj" are the thick-
p a

nesses of the gate and the source, respectively. The accuracy of this

formula is manifested in (25] by comparison with experimental data

and two-dimensional device model simulation.

* "Employing the basic idea of the cylindrical approximation for

,= the fringing fields uf the finite thickness of the gate and the

source of an MOS device, we can obtain the cylindrical approximation

on the overlap capacitance as

wI

d 0.5ff 0.5T
a s -° + / + avg
" etx n l + ln(1+y+(y(1+2))I / s)

ox

where pi4t /Z~ 4to /xi (3.10)

a avg ( as + gox)/2

4 -
.-. *,o ...,-*-....-.-.........
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The first term in Eq. (3.10) accounts for the parallel-plate com-

ponent of the capacitance, the second one results from the fringing

field of the gate, and the third term is due to the fringing field of

the source. Because the source is embedded inside the silicon sub-

strate, the difference in the dielectric constant between silicon

oxide and the substrate is taken into account by the factor avg

A few selected data points comparing Eq. (3.10) with Eq. (3.9)

are given in Table 3.2. The errors are mostly bounded within 1% for

TABLE 3.2 Comparison of Simple Formulas for Overlap Capacitance.

~d t o xp xj o y

* 9 ° ,;

0.2 0.035 0.4 0.4 4.104 4.074

0.4 0.035 0.4 0.4 6.128 6.098

0.6 0.035 0.4 0.4 8.152 8.122

0.8 0.035 0.4 0.4 10.176 10.145

" 1.0 0.035 0.4 0.4 12.200 12.169

0.5 0.5 1.0 1.0 1.295 1.301

0.5 0.5 0.5 0.5 1.009 1.082

' 1.0 0.02 0.2 0.5 20.234 20.342

S.- 0.5 0.02 0.5 0.2 11.025 11.134

10.0 1.0 10.0 10.0 5.519 5.467

C is the capacitance calculated by Eq. (3.9), and C'
i vthat by Eq. (3.10).
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various combinations of paramters. Thus, it can be said that the

, cylindrical approximation on the overlap capacitance is as good a

simple formula as that proposed in [251. Hence, the cylindrical

approximation can be more generally applied to the estimation of the

fringing capacitance due to the thickness of a plate.

To sum up, the 'cylindrical approximation formula" seems capable

of being generally applied to the estimation of the fringing field

capacitance, be it due to the side walls of an interconnect, or those

t of a Sate or a source. Besides, the errors from it are bounded

within a reasonable limit, and the expressions are simple enough for

the application in the extraction programs for design verification.

-.4. CoRuliun Capacitance

In VLSI circuits, as the design rules become more stringent

interconnects are closer together; inevitably, the coupling capaci-

tances between the interconnects become important and have to be

, '. ~ reckoned with in the circuit simulation. By numerical computation

methods, they can be evaluated rather accurately along with the

self-capacitances. However, as mentioned before, it is essential to

have a simple formula for coupling capacitances in order to incor-

S:"porato them into the extraction programs for design verification.

Since the coupling capacitances are strongly related to the

self-capacitances, it is not easy to treat them separately and derive

a simple formula solely for the coupling capacitance. For example,

. "the simple formulas derived in [24] are for the estimation of the sum
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of the coupling and the self-capacitances for two interconnects.

However, one method for generating a simple formula for the coupling

capacitance uses a "least square fit" on the data obtained from

numerical computation. In [24] the simple formulas have been

obtained by this method. Employing the programs described in Chap.2,

i.e., "CAP2DM and CAP3DM , we can collect a few sets of data on dif-

ferent configurations of interconnects. Then utilizing a subroutine,

we can fit different formulas with multiple coefficients to the data

in search of better simple formulas. C,

-". . Coupling capacitance between two parallel interconnects

Let us consider the configuration of two parallel interconnects

in a Aomogineous medium similar to the figure shown in Fig. 2.8. In

the most general case, there are seven parameters to consider the

width "w, the thickness "t", and the distance "h" from the ground

plane for each interconnect, plus the separation "s". In order to

reduce the variables in the simple formula, let us assume that both

interconnects possess the same parameters, and one of the parameters

is utilized as the normalizing factor; then, in essence there are

three variables. In (24] a simple formula for two interconnects with

identical parameters was derived. It estimated the sum of the self-

and the coupling capacitances for one interconnect. It is

4- . - . . . . . . . . . . . .



85

.C , so(1.15(w/h) + 2.80(t/h)..13 (s/h)

[0.03(w/h) + 0.83(t/h) - 0.07(t/h) ' = = 1 (3.11)

The accuracy of the formula has been shown in [241 to be within +10%

of the two-dimensional numerical computation. But the coupling and

the self-capacitances are not separated.

In order to obtain a simple formula solely for the coupling

.capacitance, the same "least square fit" method is applied on the

data calculated by "CAP2DN, and a similar formula is obtained

SC1 2  Box etO.46(w/t) + O.0271(h/t) + (sit)- ,

" (0.496(w/t) + 0.914(h/t) ] (3.12)

The errors of this approximate formula, Eq. (3.12), are given in

Table 3.3. Hence, Eq. (3.12) can be used in conjunction with

Eq. (3.11) to evaluate the self-capacitance and the coupling capaci-

tance individually.

".... Tree-dimensional cross-over geometrv

* -. In this section the configuration of perpendicular cross-over of

two interconnects in Fig. 3.7 is considered. As in the previous sec-

tion, to reduce the variables considered, both interconnects are

assumed to have the same width and thickness. Since the coupling

between the two over the cross-over region is of interest, the

.o....
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Figure 3.7 Configuration of cross-over geometry of two interconnects.
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TABLE 3.3 Percentage Error of Eq. (3.12).

'-'"

w/t h/t .500 1.000 2.000 5.000

1.00 .50 -3.7245 -9.5482 -3.5060 42.2329
1.00 1.00 -2.2482 -12.6091 -12.9382 20.2085
1.00 2.00 1.6377 -12.7294 -18.5078 2.8354
1.00 5.00 15.0499 -.5205 -6.5252 14.9383

2.00 .50 -1.0380 -9.9699 -8.9054 21.9106
2.00 1.00 .2764 -12.7097 -16.4034 6.5781
2.00 2.00 3.2419 -13.3229 -21.3423 -6.1157
2.00 5.00 14.4955 -3.5693 -11.8742 4.3947

5.00 .50 4.4536 -8.4302 -12.6018 5.5028
., 5.00 1.00 5.6243 -10.7517 -18.1644 -4.0452

5.00 2.00 8.1620 -11.3784 -22.0076 -12.5019
5.00 5.00 17.2850 -3.9135 -14.8168 -3.9239

10.00 .50 11.4921 -2.1553 -6.1729 14.9096

10.00 1.00 12.1799 -4.7770 -11.6876 5.6213
* . . 10.00 2.00 14.3737 -5.7158 -15.7960 -3.4468

10.00 5.00 22.6563 .6820 -10.2202 1.2573

lengths of the interconnects are assumed to be five times the widths

to reduce further the number of variables. Using "t" as the normal-

izing factor, we have a total of three variables, w/t, h/t, and s/t.

In this case, the parameter "h* designates the distance of the lower
.'

interconnect from the ground plane. The program "CAP3D" was employed

to evaluate the coupling capacitances in this configuration, and the

data are shown in Table 3.4. A few approximate formulas composed of

the variables w/t, hit, and s/t were tested. The following formula

seems to have the smallest error:

• .

o . A *.. . - -. * - . .... -
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TABLE 3.4 Coupling Capacitance of the Cross-Over Geometry.

Sit
w/t h/t 0.500 1.000 2.000 5.000

1.000 .500 39.323 27.732 16.808 6.132
1.000 1.000 41.811 29.811 18.386 6.986
1.000 2.000 44.749 32.364 20.450 8.243
1.000 5.000 48.032 35.659 23.406 10.385

2.000 .500 78.091 60.677 41.846 19.473
2.000 1.000 84.008 65.220 45.190 21.395
2.000 2.000 89.104 70.923 50.281 24.652
2.000 5.000 98.349 79.420 57.593 29.873

5.000 .500 204.420 168.070 126.430 74.454
5.000 1.000 209.290 174.900 133.640 79.888
5.000 2.000 207.090 179.510 142.740 88.719
5.000 5.000 224.790 199.590 163.530 105.730

10.000 .500 500.330 412.840 313.010 192.930
10.000 1.000 480.290 407.360 318.000 201.730
10.000 2.000 436.340 386.570 317.970 214.240
10.000 5.000 419.600 387.050 336.120 243.620

C 13  - o(0.0034(w/t) - 5.624(h/t) (.017 s /t)

[6.74(w/t) + 6.25(h/00 (3.13)

Note that the dielectric constant a in Eq. (3.13) is in units of

Farads. The percentage errors of the approximate formula (3.13) com-

,. pared with the coupling capacitances in Table 3.4 are listed in

Table 3.5.

S'"



IU

89

TABLE 3.5 The Percentage Errors of the Simple Formula (3.13).

sit
w/t h/t .500 1.000 2.000 5.000

1.00 .50 3.3618 -2.7977 -3.3277 -8.9060
1.00 1.00 5.0931 -1.1252 -1.2234 -1.3110
1.00 2.00 6.5507 -.0683 -.5180 1.8643
1.00 5.00 11.1813 3.0278 1.2737 3.2677

2.00 .50 3.8913 -3.3425 -1.8682 20.9546
2.00 1.00 .4967 -6.2124 -4.8980 16.2017
2.00 2.00 -1.0536 -9.7125 -10.1856 6.9443
2.00 5.00 -4.5365 -13.8360 -15.7542 -3.9548

5.00 .50 6.2601 -1.4563 -.9216 14.2679
5.00 1.00 5.3622 -3.8641 -4.8359 8.1325
5.00 2.00 8.2874 -4.7362 -9.3735 -.9373
5.00 5.00 2.3064 -12.1174 -18.8404 -14.6741

10.00 .50 -3.4869 -8.4098 -5.3784 11.2182
IO.C1. 1.00 1.2263 -6.5592 -6.2619 7.0149
10.00 2.00 12.2793 -.7924 -5.5665 1.4674

* 10.00 5.00 18.1225 .2205 -9.6661 -9.8139

Note that Eq. (3.13) has a similar structure to that of

Eq. (3.11). Also the maximum percentage errors are +20% and -18%,

and the nomial errors are around 10 as seen in Table 3.5. Siice

more levels of interconnection are needed in increasingly complicated

VLSI circuits, Eq. (3.12) would be helpful to estimate those coupling

capacitances between levels of interconnects.

.o
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The approximation formulas discussed in this chapter can be

viewed as a means to incorporate the capacitance information computed

in Chapter 2 Into the extraction programs. Mother method, e.g.,

table look-up, can also be used instead of using the Oleast square

fito on the data to find an approximation formula. However, these

approximation formulas may also provide a physical interpretation and

are simpler to handle. Thus, they are also useful in the circuit

design.

-7 -7
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NETWORK ELTRACTOR

4.. klu tni

The design process for LSI or VLSI circuits still is not fully

automated today, but contains more or less manual design steps.

These manual and the interactive layout techniques which are used to

'-p optimize the layout design inevitably introduce human errors and

inaccuracy into the design. Consequently, it is imperative to fully

check the layout and verify the design. With the ever-growing cir-

Scuit complexity, some automated tools for design verification are

necessary. Figure 4.1 shows a process flow of design and the

interaction of the design tools at various stages. The first step in

. the design verification is the artwork (or topological or mask or

'. *., layout) analysis. This step basically transforms the layout informa-

tion back to the circuit information for rechecking the circuit per-

-

formance. It can generally be classified into three distinct, but

highly interrelated categories [33] : Mi) connectivity checks, (ii)

design rule checks, and (iii) the calculation of electrical parame-

ter*. The connectivity checks examine the physical connection of the

layout elements to see if there are short circuits or open circuits.

Design rule checks basically examine the tolerances between geometric

I 5 elements to see whether they are in accordance with the process

-j r
.+ I0 *

* . .S*
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-:requirements. The calculation of electrical parameters should

include both the transistors and the interconnect parameters. For

example, the channel width, the channel length, the areas of source

and drain, and the overlap capacitances, etc., are important electri-

cal parameters for transistors. The capacitance and the resistance

are the electrical parameters for the interconnect. In the liters-

* - ture, most network extractors that have been developed concentrated

- - on the connectivity checks and the design rule checks [27,36], or the

efficiency of the algorithms (32,34.35], or the hierarchical combina-

tion of the computer-aided tools (32,37]. Not too much effort has

been spent on the extraction of the electrical parameters. Bence, in

the network extractor developed here, our main goal is to concentrate

on the third aspect of the layout analysis, i.e., the calculation of

electrical parameters, especially the interconnect capacitances.

In the face of the growing circuit complexity, the lengths of

the interconnects on the chip have to increase as pointed out in

-~ *.*(18]. Due to the smaller sizes of the transistors and this increase

of interconnects, the electrical parameters of the interconnects

~. 5-become essential. Furthermore, those parameters usually are not

taken into account in the design phase by the interactive layout

technique, so it is important to include them in the design verifica-

tion to ensure satisfactory circuit performance. In the previous

-x, .:chapter, approximate formulas for the interconnect capacitances have
.1~1been discussed. They are used in the extractor discussed in this

chapter to calculate the interconnect capacitances.
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4.j. General Proverties of the Extractor.

The extractor* is coded in PASCAL, and some important properties

of it can be summarized as follows

(1) CIF format : The input of the layout information to the extrac-

tor should be in CIF (Caltech Intermediate Form) format as

defined in [38]. However, not all the definitions of CIF are

recognized, e.g., round flash and some user-defined extensions

are not known to the extractor and errors will result.

Nevertheless, there is an option 1-u* in running the package to

ignore the errors resulting from user-defined extensions. It

should also be pointed out that the coordinates of the input

rectangles should be integers; in other words, the fraction

numbers after the decimal points in the coordinates will be

-chopped off.

(2) N technolgy : The extractor assumes NUOS technology and the

design rules defined in [38].

'" (3) Manhattan g : Since most layouts do not contain angular

geometries and for the sake of simplicity in the extraction pro-

cess, all the geometries on the layout should be rectilinear

with respect to either the x or y axis. However, the original

version of the first part of the code from Mike Graf was

intended to include also the non-Manhattan geometry. Conse-

eThe first part of the code which reads in CIF file and sets up
V. the 4-d binary trees for the rectangles on every mask is due to Mike

Graf (40].
N -
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quntly, there is some redundancy in the definition of the rec-

- .tangle record.

(4) Rectane-based dastructure : The basic entity of the data

structure is a rectangle on a mask. All the rectangles on the

A same mask are then linked together to form a 4-d binary search

"-' - tree with right thread. (26,401

(5) Truasistor cniuration : It is assumed that the overlap of

. . diffusion and polysilicon regions constitutes a transistor chan-

* nel. For the sake of simplicity the extractor only recognizes
a. ,

basically two configurations of transistors, i.e., those formed

by one diffusion rectangle and one polysilicon rectangle or

those by two diffusion rectangles and one polysilicon rectangle.

_. .'. Specialized transistor configurations, e.g., those long, serpen-

tine channel regions of output buffers, are not recognizable.

Warning messages will be generated for these unrecognizable

.- overlapped regions of diffusion and polysilicon in the output

log file. Functionally, the extractor will categorize all the

transistors into three different types of transistors, namely,

load, drive and pass transistors. The channel lengths and the

widths of the transistors are evaluated and included in the out-

put SPICE file.

(6) Outst foma : The transistors, resistors and capacitors are

reported in a form compatible with the SPICE input format. Also

' the nods numbering is automatically done in the extractor. For

PV ', example, the node 000 is reserved for the ground node, and "5"

.7
*99~**~9l
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is for the power node. Every center node of the T equivalent

lumped circuit for an interconnect has a node number Sxz in

order to distinguish it from other node numbers which start from

"6" and are incremented one by one.

(7) Paramter : All the process parameters are stored in the

wconstant.he file. For example, the field oxide thickness, the

thickness of the interconnects, sheet resistance of polysilicon,

metal and diffusion, etc., all should be given in this file, and

the extractor will fetch the information from this file in the

process of extraction. In order to screen off small resistances

and capacitances from short interconnects, two parameters

*CLI1'" and "RLI/IT" can be set in this file such that the

interconnect resistances and capacitances smaller than those

values will not be reported. Other parameters in "constant.h"

include "VIREGAP" and "BRANCHGAP", which are used in the compu-

tation of coupling capacitances, and will be discussed in a

later section.

I,. 2a Structure

In this section, the data structure used in the program is dis-

cussed. Since the program is coded in PASCAL, the "recordw defini-

tious of "root", *transistorm, lcntlist", Mwire , etc., are instruc-

tive to illustrate the data structure.

The record of a rectangle in the program is defined as

root =record

" : '", ',", -" " .' ..'" ;".-.''"'.''.," .;,',, " ""' ".."";' "."" "." ""'"',', ', ., " ".' .' '" ". ." .' : -' -%' - " ",";""",-
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key : array[O..3 of real; (S four keys
key[01 - xmn
key(l] - ymin

. key[2] - -xmax
~key[3] =- e)

mask : maskivel; 
(0 -7 ...7)

Ison, (* left son in tree structure *)
XoU : reotptr; (0 right son in tree structure o)
ndiso : integer; (C discriminator of successor-

only valid if rson is a -thread C)

lapdicator : integer; (0 an indicator *)
end;

roctptr - ret;

SThe parameter mask* in the above definition indicates the mask

level on which this rectangle resides. The mask levels are desig-

Rated as follows

I = diffusion
2 - ion implant
3 - polysilicon
4 -contact out

' - metal
6 - buried contact

- 7 - overglaseing

Usually we are concerned with only four mask levels, i.e., diffusion,

polysilicon, contact cut and metal. The levels of buried contact

S .. cut and overslassing are neglected in this extractor. Note also

that, as a rule, the pointer to a certain data type is named by

appending *ptrJ to the name of that data type. Thus, "rectptr" is

the pointer to rest, and wrectptr =-^rect" is PASCAL's way of specif-

ication.

*Only those specifications which are utilized in this extractor
are listed here. Others concerning non-Manhattan geometries and the
optimization of the binary trees are not included, though they are in
the program.

% .

.
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A 4-d binary search tree with right thread is built for the rec-

tangles on each mask level. Those three parameters "Ison", Mrson

and "ndisc" are used to link the rectangles in a binary search tree.

Each rect record is stored as a node in the tree, and lson, rson are

its two pointers which are either null or point to another node in

the tree. (Or each pointer can be considered as specifying a subtree "

to this node.) The discriminator of a node is an integer between 0

and 3 in a 4-d binary tree. Its purpose is to specify the relative

orientation of the node to its sons and its parents. It is deter-

mined as follows : The root of the tree has discriminator 0. Its

two sons have discriminator 1, and so on. The discriminator of level

4 becomes 0 again. The cycle repeats between 0 and 3. Generally

speaking, for any node P in the 4-d binary tree, let j be its

discriminator, then for any node Q in the left branch of P, it is

true that keyj(Q) ( keyj(P); likewise, for any node R in the right

branch of P, key (1) ) keyj(P). In case keyj(Q) - keyj(P), then the

oxt key, (j+l)mod4, is compared, until the order is decided. If all

keys are equal, then the two rects are identical, no node will be

inserted into the tree. In aiding the search process, a right thread

is added to the tree (39]. A negative mask value in the rect record

indicates that the right son of this node is a right thread not a

true son, and "ndiso* contains the discriminator of this successor

which is linked by this thread. It should be noted that the parame-

ter "ndisc* is only valid when the right son of the node is a right

thread, i.e., the mask is a negative integer.

• .. .
%................-
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In Fig. 4.2 an example of some rectangles on a mask and its

corresponding 4-d binary search trees are depicted. The dotted lines

in the tree represent the right threads and the solid lines are

*true' links of the trees. Those right threads should always point

to previous nodes, i.e., nodes that have been visited before the

* .i current node in the search process. A "nil" at the rightmost end of

the tree signals the end of the search. Note that the binary search

trees are different depending on the insertion order of the rectan-

gles. To be more specific. two different insertion orders and their

resulting binary search trees are shown in Fig. 4.2. These two 4-d

binary search trees all represent the rectangles shown in Fig. 4.2,

0. yet they have different structures. Since the efficiency of the

search process obviously depends on the structure of the binary tree,

the insertion order which is random in this extractor affects the

efficiency of the search process. One attempt to optimize the search

process is to try to balance the heights of those binary trees. This

was included in the original version by Mike Graf, but is not con-

sidered here. Finally, the parameter "lapdicator" is an indicator

for the subsequent search process to indicate that this rectangle has

been used already.

The transistor records are defined as

transistor = record

ttype : nostype; (C three types
load, drive, pass C)

width,
length : real;
drain,
source : remrectptr; (C source and drain rects C)

• , ,- ." -. . . . .. .. . - .. .. . .. . -.--- , -,. .--. -.-. --.-. -.- . -.-. . .. . . . .-. . . . . . . .,



*~~~ ~~ W.. . * . - - - .

100

y

BF

G

* DISCRIMINATOR

0 -- - - -DA

1 ----- A 1 E nil B nil

2 ------ BF 'C D

3- C %E a Ga i '

INSERTION ORDER

*DEFABCG ABCDEFG

Figure 4.2 An example of 4-d binary search trees.
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, gate pdlaptr;

duode,
snode,
Snode integer; (S node numbers 5)

end;
tranptr -^transistor;

Most of the parameters defined in the above record are self-

- - explanatory. Those diffusion rectangles residual of the overlap

--. " regions of the transistor channels are designated as "remarects". All

of these remnant rectangles are built into a remnant tree as before.

"Gate" is a 'pdlaptr" which is a pointer which points to a record

-pdlap" where the keys and direction of the overlap region are kept.

All of the overlap regions of diffusion and polysilicon represented

4 by this pdlap are also built into a 4-d binary search tree with right

thread. "Dnode. "snode", and "$node" are integer variables to keep

track of the node numbers of the drain, source and gate of the

transistor. They are initialized to negative integers first. After

" . . extraction is complete and all the elements are interconnected, these

variables should become positive and indicate the node numbers Of the

transistors. If the extraction process fails to connect this

transistor, the node number will stay negative, and this is very

helpful for debugging.

Another useful data structure in the program is a linear list

-V " which connects some relevant rectptrs, e.g., the constituting rectan-

gles in an interconnect can be represented as a linked list, and it

is defined as

cutlist = record

• • .-
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this : rectptr;
next : cntlistptr; (e successor in linear list e)
multipty : integer; (0 multiplicity S)
cntdir : direction; (0 direction of this rect-

used in coupling cap s)
width . real; (0 width perpendicular to

cntdir e)
found : Boolean;

end;
cntlistptr -= cntlist;

The parameter 'multipty" is used in the computation of interconnect

parameters indicating the multiplicity of this cntlist in the search

process. "Cntdir" and "width' are designed for use in the computa-

tion of coupling capacitances. "Found" is a toggle switch used in

the program to indicate the status of this rectangle. It should be

mentioned that the creation of this data record to form linked lists

of rectangles instead of tagging more fields to the rect record aims

" at minimizing modifications to the already defined rect record in the

original version. This way there may result in some cumbersome algo-

rithms and redundant procedures. Therefore, future improvements on

the program may abolish this data record and carefully replan

another.

In order to identify all the connected rectangles linked between

transistor Oports" which constitute an interconnection system, a data

record wire is set up to represent it. A transistor port is defined

to be the sate, source, or drain of a transistor. An example of such

a wire is shown in Fig. 4.3 with the corresponding equivalent lumped

circuit. The record of wire is defined as

' I ,i . 5 - . . -. . , . . . . . . . , . . ; .. . . -. - . . - . . . .. . - . . . . . . . . . . . ,.: . : . : . - . - , . . .: . , . . - . - . . . - -
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PORT 0

PORT 2

PORT1

* PORTOPORT 2

PPORT 1

Figure 4.3 An example of a "wire".
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wire - record
bound : array[O..31 of real; (0 rectangular bounds 5)
ondport : array(O..NXPORT] of portptr;
portnum : integer; (0 nunber of portptrs in endport )
knotray : array(0.JIPOtT] of portptr;
knotcnt : array[O..XPORT] of cntlistptr;
knotnum : integer; (0 no. of elements in knotray,

knotcnt 5)

branchray : array[0..JXPOr] of branchptr;
branchnum : integer; (S no. of elements in branchray C)
wirehead . cntlistptr; (0 head of wire list C)

end;
wireptr ^swire;

-J

* TBound" is the outmost four-corner boundary points of this wire, it

is defined the same way as the keys in rect. Its main purpose is to

screen off unnecessary comparison between wires in the calculation of

coupling capacitances. Then two wire bounds-are separated by more

than the parameter OVIREGAPO specified in the *constant.h" file, no

further comparisons between branches inside the wires are needed.

Since a wire links a few transistor ports together at the ends NO

of the wire, a data structure Oport" is built to represent those

transistor ports. "Endportm is an array which stores those pointers -

of the transistor ports. A "knot" is a rectangle which is connected

to more than two other rectangles in the wire list as shown in

Fig. 4.3. In order to conform with the transistor ports at the bonn-

dary of the wire, knots are also defined as ports. l1notray" col-

loot& those port pointers pointed to the knots in the wire.

'Knotcnt" is also an array of cntlistptrs which point to those knot

rectangles. A *branch" is the linked list of cntlistptrs which con-

stitute the interconnection between two ports in the wire. A T-

equivalent lumped circuit is specified for each branch in the wire,

o ~ - o . °° o . . •. o. • . . ° '. ", o. . o. o - . . - - "• . 'o ° o .° " o. - - - o ° f . , " °o ,° ° ° o .o .
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and the equivalent resistance and capacitance are computed according

to the branch. As the others, *branchray" collects those branches.

For each array, there has to be an integer 'to indicate the nuber of

elements in the array, and "potnum , *knotnum" and "branchnum  in

the definition are those integers.

Ad kxa.i f .~
4.4. Extraction Procedure

Since the first part of the program which reads in CIF input

lines and sets up the 4-d binary search trees for the rectangles on

each mask level was obtained from Mike Graf as mentioned earlier, we

would like to concentrate on the discussion of the second part of the

-rprogram, i.e., the extraction of the transistors and the interconnect

parameters. The program is coded in PASCAL and separated into nine

subprograms and one main program. The first part of the code is con-

tained in subprograms "exirst.pM and "exsecond.p". Note that "*.p"

is the defaulted format on the VAZ/UNIX system to indicate a PASCAL

program.

A .4.. Li the diffusion ad oolvsilicon overlap

First the transistor channel region should be identified.

According to the NNOS process in [38], the overlap of diffusion and

polysilicon rectangles constitutes a transistor. Therefore, a search

for every diffusion rectangle on the mask through the polysilicon

fid binary tree to find any polysilicon rectangle which overlaps this

4. C VAX is a trademark of Digital Equipment Corporation, and UNIX is
a trademark of Bell Laboratories.

... ..4..-... .... . . -.. .-.... . . .. . . . .. , . . , . .. - . .. . . , .. / . ., . . ,- . .
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diffusion rectangle should be done. If an overlap is found, a record

of type pdlap is set up in memory and a pointer to it is generated.

Next all those pdlaptrs are stored in a 4-d binary search tree as are

those of rectangles. The insertion algorithm will be given in detail

in See. 4.6 and it is similar to that in [26]. In the record pdlap.

the coordinates of the overlap region, the pointers to those two rec-

tangles which form this overlap region are kept.

Note that in the process of finding the overlap region, all the

relative positions of two rectangles on a plane have to be con-

sidered. They are : overlap, meet at a line, meet at a point, and

disconnection. If one rectangle is totally enclosed inside another,

this can be considered as a special case of overlap. The cases in

which a polysilicon rectangle and a diffusion rectangle meet at a

line or at a point are illegal for the design rules employed here.

Hence, warning messages will be produced in the log file. Last, the

above zunctions are performed by the subprogram wexthird.p".

. . . q JM u transistors

After the overlap regions are identified, transistor records

should be established. Since the channel region of a transistor can

be made of connecting overlap regions, they should first be located.

For each node in the tree of overlap pointers, a search for adjoining

overlap regions in this tree is conducted. All the found connecting

li overlap regions are built into the gate of a transistor. If no other

r-%S

adjoining overlap regions are found, then this solitary overlap

S region also constitutes the gate of a transistor. As mentioned

• --.'- . .". ... ... -" . ." " " ." " ' . '" "" " "" ' "" " "" "" -" " "'o " .5
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0. before, the possible configurations of a transistor are limited in

this extractor for the sake of simplicity, and there can be at most

"- two connecting overlap, regions to form a transistor channel.

Next, the drain and the source regions should be identified.

They are those remnant regions of diffusion rectangles outside of the

channel regions already identified as sates. The above-mentioned

limitation is mostly intended to simplify this process. Because the

remnant regions from a serpentine-shaped channel region would not be

rectangles, but rather polygons, they are not easy to handle within

the frame of the present data structure. With the above limitations,

the remnants are still rectangles, and they can be separated from the

channel regions and identified by a procedure called *splitw in sub-

program Mexfourth.p". Then rearect records are set up for those

remnant regions, and all of them are also linked into a 4-d binary

* tree. In transistor record, the pointers to the source and the drain

OrearectsN are also kept for future reference in the extractor.

Additionally, the type of the transistor should be defined.

- Sine* the *load" transistor is assumed to be depletion type and has

its gate connected to its source, the special characteristic of a

"* contact cut overlapped with the Sate region is used as a criterion to

identify it. The intersection of the ion implant region with the

gate region can also be used as the identifying mechanism. However,

* the former method is employed here. The pointers of those load
t q

transistors are kept in an array "loadtran" with an integer variable

"loadnn to indicate its number of elements. The other transistors.

i9
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be they pass transistors or drive transistors, are kept in another

array "othertran". These procedures are performed in subprogram

exfourth.pm.

AA.-. LId h e r "AZ UM h round

It is assumed that all the ground nodes are connected by a net-

work of rectangles and that they collapse into a single node "0" in

the circuit simulation. This applies to the power supply too, and

the power network is designated as node "5". In order to string both

networks in two linear linked lists, coordinates of two points have

to be led in interactively. Then the two rectangles which encompass

these two points are selected as the 'heads" of the respective lists. -'

A "depth-first" search [31] is then performed to find all the rectan-

gles in the lists. The procedures "connect" and Isetconnect" perform

.1. this function. These procedures are used constantly in the latter __

part of the program to find connecting rectangles for "wires".

The procedure "setconnect" is used to search through the speci-

fied mask level given the pointer of a cntlist and its rectangle.

The data record ontlist, which was discussed in the previous section,

is employed and its pointer is named "cntlistptr*. Note also that

the parameter lapdicator in the rect record is set for the rectangle

which has been selected so that it will not be used again in the

search process. The "depth first" search starts with the head

cntlistptr and its rectptr as the seed, finds all the rectangles on

the given mask level which are connected to it, and links then in the

list. It then goes to next cntlistptr on the list, uses it as the

j- t'-" '
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seed, and continues to search the same tree for connecting rectangles

without a set lapdictor until no rectangles can be found.

" Since the constituting rectangles of an interconnect or the

+ •power network may not necessarily be all contained on one mask level,

the search process should be able to extend to other mask levels as

well. Utilizing the fact that those interlevel connections can only

be made through contact cuts, the procedure "connect" then performs

this extended search. It will call upon "setconnect" and search not

only the mask level of the seed but also the mask level of the con-

tact cuts. The pointers of the found contact cuts are also linked in

the linear list in the "depth first" search. Then, whenever a con-

tact cut is encountered as a seed in the process, all three levels

(diffusion, polysilicon, and metal) have to be searched by the pro-

. edure Osetconnect". This way all the connecting rectangles, even

across different mask levels, can be found, and the power network and

the ground network are stored in two lists headed by "powerlistw and

' groundlist". The above procedures are contained in the subprogram

Opexfifth.p".

-'d et. Sei nower and around noes

First the remrects of *loadtrans" are searched to see if they

. are connected with any rectangles in the powerlist. If a contact is

found, then this remrect is designated as the drain of the transistor

I and *a default node number 5 is set. The other remrect is automati-

cally set as the source of this load transistor. Next the remrects

of 0 othertrans" are searched and compared with the rectangles in the

-"7
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groundlist. Any rearect connected to this list is set as the source

of the transistor and a default node number 0 is aesignated. Another

-.. *reurect of this transistor will be set as the drain of the transis-

tor, meanwhile, the transistor will be named as "drive" transistor.

The procedures "setpowernode" and "setdrivenode in subprogram

*exsixth.pw perform the above functions.

Note that the resistance and capacitance of the power and the

ground networks are not considered in this extractor. The power and

the ground are assumed to be at constant voltages and are designated

to be node 5 and node 0, respectively. Also the unset nodes will
.'U

.'U retain their initialized negative values after this stop.

1-1-1. Eiai wires

After extracting the power and the ground network, all the

remaining undecided sources, drains and gates of transistors should

be linked together by "wires". Starting with the unset source or

drain nodes of load transistors, and then the unset source, drain or

-_ Sate nodes of other transistors, we proceed to find all the wires.

First, using an unset port of a transistor as the head of a

list, we can search for connecting rectangles by the procedure "con-

r neet, and the data record wire is built in the process. The origi-

'U>. nal starting node of the transistor is the first element in the array

-.~- edportO in the wire record. In the process of depth first search,
t-I

each rectangle in the list is also compared with other unset nodes of

other transistors in arrays *loadtran and "othertranw If a contact

NW A

.o #. .,
e . . . . .*. . . . .- . . . .
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is found, then those nodes will be included as ports of this wire in

the array "endport". Note that this process only searches for those

rectangles which have not been selected in the previous search pro-

P coss. (Lapdicator in the root record will indicate to that effect.)

Thus, the search process will end when all the connected rectangles

in an interconnection are found, and the ending ports of the wire

.'- *. will also be found and kept in the array. The above functions are

performed by the procedure Mfindwire" in the subprogram
o.°

"exeighth2.p".

4 4. Compute interconnect resistance and self capacitance

From the data record wire, the equivalent circuit parameters can

be computed, i.e., resistance and capacitance. As shown in Fig. 4.2,

the interconnection of a wire may be multiple-connected, i.e., there

are knots at the intersection of the branches. In order to identify

those knots, the linked list of rectangles has to be searched first.

Any rectangle in the list having more than two connections to other

, - rectangles is considered a knot and they are stored in the arrays

•knotray" and "knotcnt". A branch is defined as a linked list of

d*" rectangles between two ports remembering that knots are also ports.

For each branch in the wire, a corresponding T equivalent lumped cir-

.. •cuit is set up as shown in Fig. 4.2. Heuristically the two resis-

tances are assumed equal and half the value of the do resistance

H which is calculated from the linked list. Furthermore, the capaci-

tance to ground is the self-capacitance calculated by the wcylindri-

. ' cal approximation formula" given in Chapter 3. Note that the formula

-V

~% %%% , .- ,% % ,
,
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is a two-dimensional one, and the calculated value from the formula

has to be multiplied by the length of the branch for the total capa-

citance value. No special considerations are given to corners and

bends in the branches.

It is important to mention that the rectangles of the knots are

included in all parameter computations of the branches which are

connected to them. If a long rectangle is designated as a knot,

then the calculated parameters of the branches may be too large. In

other words, this is a pessimistic estimation of the parameters. It

is hoped that this situation may be alleviated by careful layout or

by developing further procedures to recognize it and split the rec-

tangles to make it congruous to the calculation. Some of the pro-

cedures in the subprograms "exseventh2.p" and "ezeighth2.p" perform

the above tasks.

d.A.7.. St u2 node numbers

Before reporting the calculated electrical parameters, we have

to first check them with the criteria in file "constant.hN. There

are a few cases to consider (i) If both the capacitance and the

resistance values are larger than the criteria, "CLIMITO and

"RLIlIo", all components of the T equivalent circuit are reported.

(ii) If only the resistance is smaller than "RLIMIT", then the node

numbers at the eudports of this branch should be the same, and the

capacitance should be inserted between this node and the ground.

Furthermore, if the capacitance is also smaller than "CLIMITO, just

assign the two connecting endports with the same node number and

"
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forget the T equivalent circuit. (iii) If only the capacitance is

smaller than "CLINIT", no center node is needed in T circuit, and the

two resistors are collapsed into one resistor connecting the two

-_ ! endports.

Since knots are considered as ports, node numbers are assigned

- -to knots also. Generally, in determining the node numbers at the end

.' of resistors, first check the connecting ports. If node numbers have

been assigned to the connecting endports, then the resistor will use

- those node numbers at its ends. Otherwise, new node numbers are gon-

"rated. The center nodes where capacitors are connected to ground

- --are numbered as Sxx, so that they can be easily recognized.

0 4.4. Commute coupling cavacitancos

-i .'" In the computation mentioned above, only the self-capacitances

of the interconnects are considered. To further compute the coupling

capacitances, the proximity of the *wires" has to be checked. First,

-"' the bounds of the wires are compared pairwise. If they are discon-

nected by a margin larger than ITIREGAPF specified in the file

-constant.hm, then no further comparison will be made to avoid possi-

ble confusions. Otherwise, the branches in both wires have to be

compared paizrise. In this check, another parameter OBRACHGAP in

the Nconstant.hN file is used to test.the separation of the branches.

e. Only when the separation between two interconnects is smaller than

, this parameter is the coupling capacitance between them computed by

the approximate formula in Chapter 3. Since there are quite a few

different scenarios of two close interconnects, e.g., they can be

-4*** * -..- -
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parallel on the same level or on different levels, or a metal line

can cross over a polysilicon line perpendicularly, etc., every case

of two close branches has to be considered individually. Also these

scenarios may be dependent upon the technc.'ogy employed and the

parameters of the fabrication processes. In the present version of

the extractor, silicon NKOS technology is assumed and only parallel

lines on the same level and the perpendicular cross-over are con-

sidered in the coupling calculation. In Fig. 4.4, an example of two

parallel interconnects is shown. Note that the capacitance computed

by Eq. (3.12) is capacitance per-unit-length; thus, it must be mul-

tiplied by the total length in question. In the case shown in

Fig. 4.4, the length used in the computation is l+l. This

apparently is less than the actual length because of the omission of

the turn. The T equivalent circuits for these two interconnects are

also shown in Fig. 4.4. One of the advantages of using the T circuit

is that the coupling capacitances can be easily inserted between the

" center nodes of the two T circuits of the adjacent interconnects.

The procedures "sortwire' and "comparewire" in the subprogram

-exninth2.p" perform the above functions. It should also be men-

tioned that the self-capacitances of an interconnect will be reduced

slightly due to another interconnect in the vicinity as discussed in

Sec. 3.3.1. However, this effect is not taken into account in the

computation of the self-capacitances in this extractor.

-i

9%,
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Figure 4.4 Consideration for the evaluation of coupling capaci-
tance between two parallel interconnects.
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Basically, The extractor generates two output files. One is the

log file and the other is the SPICE file. The log file records warn-

in, and error messages and all the steps taken in the extraction pro-

cess along with the time and date for reference. The original CIF

input file and some data structures like wires and transistors are

also included for debugging. It is defaulted to "list.out" or

another name given by the user. A detailed explanation of the usage

and commands of the extractor can be found in the procedure header of -u

,getcmdlnargs " in the subprogram "exsecond.p".

Another file is the SPICE file which includes all the parameters

of the transistors and the interconnect resistances and capacitances.

The format on this file is compatible with the SPICE input format.

The node numbers are set in the extraction process and cannot be set

externally. This may need to change in the future version so that

the user can set the crucial node number to his choice to improve the

readability of "the output. This file is defaulted to the user's ter-

minal, if not otherwise redirected or renamed. A few examples will

be discussed in the next section and some SPICE files are shown

there.

4.j. xjjo and Results

In this section, a few examples to illustrate the network ..

extractor are presented. The circuit layouts are drawn manually

* employing the design rules comformable to those in [38]. After
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supplemented with some model cards and input output specifications,

the extracted outputs of the circuits are fed into SPICE, and the

,--. simulated circuit responses are compared.

- j4. jxaple I: Static RAN call

In Fig. 4.5, the layout of a six-transistor static RAM cell is

shown. After extraction by the network extractor, the output SPICE

file is given in Table 4.1. "CO00, *rOOO and "rr000" are the three

components in a T equivalent circuit for an interconnect. "R000 and

"rrOOO have the same value of resistance. The center node of the T

circuit where the capacitors are connected to the ground is numbered

from 500. The capacitance .cO03" is the only coupling capacitance

12 between the interconnects of nodes 7,10 and nodes 6,11. That is, the

coupling capacitance of the metal and polysilicon cross-over at the

center of the layout.

' - A schematic circuit diagram of the circuit is also shown in

Fig. 4.6. Note that the negative node numbers on "motOOO" and

mot002" are due to the dangling nodes connected to the bit line and

the word line on the pass transistors at both ends. Those negative

nodes are helpful in locating not only the input and output nodes,

-" but also the erroneous disconnected nodes. It should also be men-

tioned that, in the extraction process, the parameters 'RLIMIT and

NC.INIT" in the file "constant.h" are specified as zero, so all of

the resistances and capacitances of the interconnects are computed

and listed in Table 4.1.

~~~~~~~~~~~~. ......-............................ ...... .... - .......... ,.,... .. -.-.4- . . - . ., -. -, .,-, -,. -, . .,-'.,,, - ,...- .
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TABLE 4.1 SPICE Output Listing for SRAM Coll.

C000 500 0 0.Oll0pf
:000 8 500 2.9o+02
rr000 500 9 2.9e+02
coo1 501 0 0.OO4lpf
:001 10 501 1.1e+02
rr0O1 501 7 1.1e+02
@002 502 0 0.0077pf
r002 11 502 7.5e+01
rr002 502 6 7.5.401
@003 501 502 0.OOZ0pf
mldOOO 5 6 6 0 load 1- 9.O0um w- 2.67um

- xld00l 5 7 7 0 load 1- 9.O0u w- 2.67u
* otOOO 7 8 -1 0 pass 1- 2.O0um w- 2.O0u
*motOOl 6 10 0 0 drive 1- 2.00'um W- 8.O0ua

m - otOO2 -2 9 6 0 pass I- 2.0u ur- 2.O0us
m otOO3 7 11 0 0 drive 1- 2.O0uum 8.O0ua

:,k
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4. VDD

5

8 9

GND 0

Pd Figure 4.6 Schematic diagram of SRAM cell.
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The schematic circuit diagram of "Full Adder Circuit 10 is shown

in Fig. 4.7. With the same specifications in the "constant.h" file

Q
as in the previous example, we can extract the SPICE file from the

.* extractor. Combined with some model cards, input and output specifi-

* cations, and a few modifications to the circuit, a few simulations*

-. ".' of the circuit are performed. In order to distinguish the effects of

the interconnect parameters, three cases are considered, namely (i)

the circuit without taking into account the interconnect parameters;

(ii) the circuit with only the self-capacitance and the resistance of

the interconnects; (iii) the circuit with all interconnect parame-

ters including the coupling capacitances. These three simulated

responses of "Full Adder Circuit I" are shown in Fig. 4.8 to

Fig. 4.10. The full SPICE deck for case (iii) is given in

Appendix E. It should be pointed out that all eight possible combi-

nations of the three inputs to the full adder are covered in the

simulations, and only the first input wavefors is shown in the

graphs. The other two input waveforms are not plotted for the sake

Sof neatness of the graph.

In comparing Fig. 4.9 with Fig. 4.8, it is obvious that the rise

. and the fall times in Fig. 4.9 are larger than those in Fig. 4.8.

This is naturally due to the RC time delay contributed by the inter-
.. e

connects in the circuits. It should be mentioned that the time

. These simulations are actually done by SLATE [48,49] which has a
similar format as SPICE and does a better job at transient analysis.
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Figure 4.7 Schematic diagram of Full Adder I.
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delays shown in Fig. 4.8 may be attributed to the capacitive loads of

0.1 pF at both output ports. Furthermore, these loads are used

-: throughout all the circuits discussed in these two examples of full

adder circuits.

The circuit response of the third case which also includes the

coupling capacitances are shown in Fig. 4.10. They differ little

from the responses shown in Fig. 4.9. On close examination, there

may be just a little more delay. Overall, it can be said that the

coupling capacitances for this circuit do not influence the circuit

responses much. However, the inclusion of the self-capacitances and

-' the resistances has more visible effects on the responses, and they

should be considered in the circuit simulation.

-'... Exale III Full Adder Circuit II

Another full adder circuit is used as an example. Its schematic

is shown in Fig. 4.11. There is a basic design difference from the

previous full adder circuit. In this case, more pass transistors are

used. Noticeably, they are used at the output ports; thus, the out-

put responses of this circuit cannot reach the full 5 volts of VDD.

At most, the logic "10 for the outputs can reach 5 volts minus the

threshold voltages of the pass transistors which are set at 1 volt.

This point is manifested in the following graphs. Those three cases

mentioned in the previous example are also considered here. In

Fig. 4.12, the responses of "Full Adder Circuit II" without the --

interconnect parameters are shown. Figure 4.13 is for the case of

taking the self-capacitances and the resistances into account.

g t.. . . i .... a.......c............... .... ,, c'.u" -,- *.......-
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C. C-Figure 4.11 Schematic diagram of Full Adder Circuit II.
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Finally, in Fig. 4.14 the responses with all the interconnect param-

eters included are considered. The "constant.h" file, the model

cards, and the load capacitances are chosen the same as in

Example II; the listing of the SPICE input deck is given in

Appendix F.

In comparing the responses for these three cases, it is obvious

that the coupling capacitances in this circuit have greatly affected

the output responses. Especially, the waveforms in Fig. 4.14 differ

drastically from those in Fig. 4.12 and Fig. 4.13. Not only are the

rise- and the fall-time delays of the responses larger than those in

Fig. 4.13 and Fig. 4.12, but also there is a notch developed in the

sum waveform. This may result in unwanted errors or hazards for the

circuit. Hence, the circuit or the layout of the circuit should be

examined more, or redesigned, to correct this possible flaw. In

design verification, it is our aim to discover and eliminate those

possible errors. On the other hand, the responses in Fig. 4.13 with

only the self-capacitances considered differ from those in Fig. 4.12

by larger rise- and fall-time delays as the case in the previous

example.

To sum up, it can be concluded that the coupling capacitances of

the interconnects are important in the circuit simulation in this

example. However, in the previous example, they had an insignificant

effect on the circuit responses. Consequently, coupling capacitance

effects depend heavily on the mask layout and the circuit itself.

- These simulations are also done by SLATE.

• . -
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Their effects on the circuit have to be investigated individually.

As to the self-capacitances and the resistances of the interconnects,

they surely contribute to the time delay of the circuit and should be

considered.

' Computational ComDlexit. of the Extractor

Because of the increased circuit complexity and myriads of data

involved in VLSI circuits, it is essential that the CAD tools consist

of computationally efficient algorithms. The insertion algorithm of

the 4-d binary search tree with right thread, which is the basic data

structure of the extractor, is given partly in [26] and listed as

. follows

• Given a node P to be inserted into the tree.

Il. [Check for empty tree] If ROOT - nil, then ROOT <- P,
RSON(P) <- nil, LSON(P) <- nil, set RSON(P) as a thread,
return; otherwise, Q <- ROOT.

12. [Comparison] If K1 (P) o X-(Q), 0 i S 3, and
i is the discriminator, then return; otherwise, set SON(Q).
(ISON or LSON depending on the comparison of Key(P) and
Key(Q)). If SON(Q) - nil, then goto 4.

13. [Move down the tree] Set Q <- SON(Q), goto 12.

14. [Insert new node in tree] Set SON(Q) <- P, RSnN (P) <- nil,
LSON(P) <- nil, return.

A detailed discussion of the complexity of the above algorithm was

given in [26], and it was concluded that typical insertions and

record look-ups in a 4-d tree will examine approximately 1.3 86log1 n

nodes, where n is the size of the tree. In the extractor, this

..*°o
. .. .
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insertion algorithm is called to set up a 4-d binary search tree for

rectangles on each mask. It is also set up for the diffusion and

polysilicon overlap rectangles.

Next in search of the diffusion and polysilicon overlap regions,

a search algorithm is needed. For example, siven a polysilicon rec-

* tangle P with its four keys, we have to find all the diffusion rec-

tangles Q which are overlapped with P. In other words, the keys of P

and Q have to satisfy all the following conditions simultaneously

-'." KOMQ .- KslP)

1
1 (Q) S -K3(P)

K5 (Q) -K.(P)

.'.,K3(Q )  -I(P)

- This search is classified as "Intersection Queries" in [26,30]. The

search algorithm can be described as follows •

* . Given a rectangle P. try to find all the overlapping rectangles Q's
in the tree rooted by ROOT.

"-' 11. [Initialization] Q <- ROOT.

12. (Move to leftmost corner] While LSON(Q) 0 nil do
Q <- LSON(Q) and INC.FNT(i). i is the discriminator.

13. [Check intersection] If K.(Q) K,(P),
0 j S 3, then report Q. iontinue I 4.

4. [Go to predecessor] If K- K1e(P) or
,SON(Q) is a thread, then set Q <- EDE

* 4 If Q - nil, then return; otherwise goto 12.

The above algorithm is similar to that described in [27]; basically,

-' .,4 -" ." " e , . . .. " . . .4. , . . . . .** , . ., . -. . . - 4. ,* 4. - - - '-. .4. .. % % ,
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it is an "inordern traverse of the binary search tree. The main

advantage that this data structure offers in saving traverse time is

due to the check on stop 14. If the condition K.( o) > - P

is satisfied, then the right subtree of Q need not be traversed, and

the search can be directly positioned to the predecessor of Q. Note

that only one condition is checked in this step, and i is the

discriminator. Instead, all four keys have to be examined in step

13. Moreover, the procedure to find the predecessor can be accom-

plished rather easily with the help of the right threads woven in the

tree instead of employing a stack register to store the nodes on the

way down the tree as suggested in [27]. Hence, this is another say-

ing in the search time. However, due to this step in the search

algorithm and the random nature of the tree, it is difficult to

evaluate the computational complexity for this algorithm. Some

* empirical data had been collected to test the complexity as discussed

in [27]. It may be inferred that the search algorithm of the 4-d

binary tree is rather efficient.

Other possible expensive algorithms in the extractor may be

* those for establishing the interconnect data structure wire and find-

ing the coupling capacitances. Because the transistors are stored in

linear arrays, a search through the whole arrays has to be done for

each interconnect rectangle to check if it is connected to the

transistor ports. Also, the algorithm of finding the coupling capa-

citances is done by first comparing the wires pairwise, though "wire-

bounds" are used first to screen off far-away candidates; then, all
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the branches inside the wires are compared pairwise. Both of these

algorithms are approximately n processes, and they can be computa-

tionally intensive. Thus, they are in want of some improvements in

the future versions.

In order to experimentally estimate the computational complexity

of the extractor, a few cases of a chain of "Full Adder Circuit II".

presented in the previous section, are tested. The number of

transistors in the circuit is used as a measure of the complexity of

the circuit. The results are given in Table 4.1. An empirical rela-

-. ' tion between the number of transistors (N) and CPU time (T) can be

assumed as : T - aON. From the data in Table 4.1, the exponent A can

be estimated to be in the range of 1.3 to 1.7. Therefore, the compu-

* tational complexity of the extractor is proportional to O(N ) to

O(N ) * where N is the total number of transistors. This is

TABLE 4.1 CPU Time Consumption of the Extractor.

no. of transistor (N) CPU Time (T) in sec

21 13.3

42 33
63 58.1
84 84

105 122.4
168 264

336 851.2

- One "Full Adder Circuit IT" contains 21 transistors.

S." *= .
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comparable to some other extractors, e.g., the extractor discussed in

[28] has complexity of O(N '*).

In sumary, from the examples shown in this chapter, it can be

concluded that the inclusion of interconnect parameters in the cir-

cuit simulation is important. One can discover possible timing

errors in the design or the layout. In order to handle more complex

circuitry, the algorithms employed in the extractor need to be effi-

cient, and hierarchy should be built into the program.

LOA'.--. .-*

* * .* -.-
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CONCLUSION

The complexity of VLSI circuits has necessitated the development

of more comprehensive CAD systems. One of the problems addressed in

. .this thesis is concerned with the interconnection circuit. It is

essential to take into account the electrical parameters of the

interconnects in the more complicated VLSI circuits as they gradually

". -become the dominating factors. Furthermore, it should also be "com-

putationally feasible* to extract this information from the layout in

1 the design verification. Hence, there are basically two parts in

. .this thesis. The first part is concerned with the accurate computa-

tion of the interconnect capacitances with numerical methods, more

specifically, the integral method was employed here. Then simple

formulas for the interconnect capacitances are developed in the

- "thesis with a view to easily incorporate them into an extractor.

The second part of the thesis deals with the extraction of intercon-

nect parameters, and a network extractor was developed for it.

In Chapter 2 a detailed formulation of the integral method was

given. It encompasses the derivation of the Green's functions in

homogeneous, two layers and three layers of media; the even-odd mode

,I 'analysis for multi-conductor; and the use of the "method of moments"

-- . to solve the integral equation. Pulse-type functions were used for

. both the basis functions and the testing functions for the sake of

..~ .
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closed-form evaluation of kernel matrix elements. This method is

integrated into two FORMLAN programs "CAP2D" and "CAP3D". All the

self capacitances with respect to the ground of every interconnect in

question and all the coupling capacitances between interconnects can

be evaluated up to three layers of media and at most ten intercon-

nects. For the two-dimensional case, slant side walls of the inter-

connects were also considered. As the examples in Chapter 2 and

Appendix B show, a variety of interconnect capacitances can be

evaluated by these programs, and they are reasonably efficient and

versatile. However, in three layers of media, the Green's function

has become quite complicated and the computation may be intensive.

If detailed capacitance information is needed for irregularly shaped

boundaries, the integral method may not be suitable.

As for the simple formulas, the "cylindrical approximation for-

mula' was derived in Chapter 3 for the self-capacitance. It is based

on the known formula of the capacitance of a cylinder above a ground

plane. As shown in Chapter 3, it compares favorably with other sim-

ple formulas and is reasonably accurate with respect to the numerical

results. Then a *least square fit" method was employed to find sim-

ple formulas for the coupling capacitances between two parallel

interconnects or two interconnects on different levels which cross

over each other. These prove to be useful in the network extractor.

As the interconnect structure becomes more complicated, simpler for-

mulas may be necessary to include all the capacitances in the extrac-

tion.

-Q%

* 1. . . .
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Finally, a detailed description of the network extractor was

given in Chapter 4. It is a rectangle-based, Manhattan-geometry-

only, N OS extractor. It reads in CIF input of the layout informa-

2 tio, then puts out circuit components in SPICE compatible form. The

SPICE output file includes transistors and their parameters, e.g.,

' .channel width and channel length and the resistance and capacitance

of the T-equivalent lumped circuit of the interconnect. A few exam-

plea were given in Chapter 4, along with some circuit simulations.

From these examples, it is apparent that the interconnect parameters

certainly play an important role in the circuit simulation. Although

the original design did not emphasize the efficiency of the extrac-

itor, it was found out by experiment that the computational complexity
of the extractor is approximately proportional to O(Nl'?), where N is

the number of transistors in the circuit. However, due to simplifi-

cation of the transistor extraction, only a limited repertoire of

Stransistor configurations is recognized in the extractor. Also, some

redundancy in the data structure and possible inefficiencies in the

algorithms may need further improvements. In all, it fulfills the

need to have the interconnect parameters extracted and utilizes the

simple formulas derived in Chapter 3. Besides increasing the reper-

toire of transistor configurations recognizable to the extractor and

improving some of the algorithms and data structures in the program,

it is also necessary to link the extractor hierarchically with other

CAD tools to handle larger circuits.

-,-- - , --. ' - . - ' ' " '. . " . . . . _ . ' . '.- . . . . ' - . . . . - . . . . . - . . , ' - . . ' . . . ,
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APPENDIX A

THE VALIDITY OF TE LUMPED CIRCUIT MODEL

A.. Introduction

The lumped circuit model for the interconnect is employed in

this thesis. A discussion is presented here to establish the vali-

dity of this approach through the transmission line theory.

.A.. Formulation

Consider a transmission line circuit and its T-equivalent cir-

cuit shown in Fig. A.1 and Fig. A.2. The length of the line is "1"

and and "Zl1 are the current source and the line load, respec-

tively. The characteristic impedance and the propagation constant

are

- [CR+JL)/(G+jwC)]1 1 1
V - °./oa""" /2 "

yl [(R+jwL).(G+jwC)]i,

where R, L. G. C are the resistance, inductance. conductance and

capaoitance per unit length of the line. From the transmission line

theory, the input impedance Z5 and the voltage response at the load

end of the line V1 can be expressed as [461

- .o.2

. . . .... . . °
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- *Zlcosh(1l) + Zgsinh(yl)(Al

Zlsjnh(Il) + Z~cosh(yl)

UV 1 Z. (A.2)
zlainh(yl) + Z~cosh(yl)

These two parameters define the characteristics of the transmission

line, and they will be compared with those of the "equivalent" lumped

circuit model.

Next consider the T-equivalent lumped circuit in Fig. A.2. All

the parameters are defined the same as those in Fig. A.l. Then the

input impedance Z *and the voltage response Vj of this lumped circuit

can be easily obtained as

z 1 +0.Sy1 1) + Zo(yl+0.25y ')(A3

vi' LSL 2 (A.3)
Z*l O51)+0.- Z1(+yl) Y

In order to show that the lumped circuit in Fig. A.2 is an

Mequivaleut" circuit to the transmission line circuit in Fig. A.1,

the input impedance and the voltage response should be correspond-

ingly equal. In other words, Eq. (A.3) should be equal to to
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Eq. (A.1) and Eq. (A.4) to Eq. (A.2). Note that if the hyperbolic

functions, sinh and cash, in Eq. (A.1) and Eq. (A.2) are expanded in

- .a Taylor series, the first-order approximations are

sinh(Yl) "I +

1 2
cosh(yl) - 1.0 + O.Sy 1 + .....

Furthermore, if the above approximations are substituted into

Eq. (A.1) and Eq. (A.2), Eq. (A.3) and Eq. (A.4) are obtained except

" r- for the term 0.25T 1' in Eq. (A.3). Therefore, it may be concluded

* that the equivalent lumped circuit is valid, as long as the parameter

Tl is small enough.

A.3. Discussion

A..•.• Lossless transmission line First, let us consider a loss-

Io less transmission line. In this case, the resistance and the conduc-

tance of the line are relatively small, i.e., R << wL, and G << C.

Then the propagation constant becomes

-7 2X

where X is the wavelength of the propagating wave on the transmission

line. In order to satisfy the criterion arrived earlier, i.e., the

factor TI - j2il/A must be small, the length of the line 1" should

*Q , be small compared with the wavelength on the line X. This is the

usual criterion for the validity of the lumped circuit model.

Si
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A.3.2. RC lossY line

Next, consider a lossy line with negligible inductance and con-

ductance, i.e., R >> wI, and G <( wC. In this case the propagation

constant becomes

7 -(l). )

2

To keep y1 small as discussed before, the factor (wRC) /1 l should be

$ a
kept small too. In order words, w RC1 should be small. The term

a

RC1 , as a whole, can be considered as the "time delay" of the

transmission line, and the factor 1 is due to the per unit length

basis of the resistance and the capacitance. If T is the period of

the propagating wave, and w 2W/T, then wRC12 = 2n(RC12/T). The

criterion for the validity of the lumped circuit, i.e., small Tl, can

be interpreted in this case as implying that the delay of the line

should be small compared with the period of the wave. For a typical

example [471, a doped polysilicon line with 300/square and 1 cm long

-7has a time delay in the order of 10 sec. This corresponds to a pro-

pagating wave on the line of frequency about 10 MHz. This is usually

unacceptable for the typical circuit employing silicon technology.

Therefore, long lines usually lie on the metal level. For the case

0O of large R or C of the line, multiple sections of a lumped circuit

can be used to approximate the transmission line. In summary, for RC

lossy lines, the criterion for the validity of the lumped circuit is

- that the RC time delay of the line be small relative to the period of

the corresponding frequency of the line.

C- .--

-* * q - . . . . . - - - - . -

. . . .
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I APP3IWfl B
'.1

CAP USER' S MANUAL

B.. Introduction

-CAP2D" and "CAP3D" are two FORMIAN programs for two-dimensional

and three-dimensional capacitance computations. A detailed descrip-

tion of their usage and output format is given; some examples are

also given at the end.

B.2. Description

The numerical computation of capacitance of these two programs

- is based on the integral method which is essentially the Green's

function approach combined with the moment method. Pulse-type basis

functions over subdivisions on the conductor's surface are assumed,

and the testing functions are chosen the same as the basis functions.

The subdivisions can be chosen to be variable-length or constant-

length. If variable-length subdivisions are chosen, by default, they

are divided according to the roots of the Chebyshev polynomials.

-* Since subdivisions with variable length usually yield more accurate

results for the same number of subdivisions, the constant case is

basically included for comparison purposes.

Both programs have the capability to handle up to 10 traces (or

conductors) in at most 3 layers of different media. In the two-

0_
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dimensional case, "CAP2D" is also capable of taking into account the

pitch angle of the slant side walls, assuming that the traces are

left and right symmetric. However, "CAP3D" for the three-dimensional

case deals with vertical side walls only. In the case of multiple

layers, i.e., two layers or three layers of media, an infinite summa-

tion is involved in the Green's function and a cut-off criterion

should be chosen.

The programs are designed to be run interactively. Alterna-

tively, the UNIX system also provides a way to run it through an

input file and redirect (0<0) command. The following parameters will

* -be prompted in running the programs.

, . (1) *number of traces" and "number of layers" they are self-

explanatory. --

(2) *want kernel matrix ?w and "want grids ? If "y" is chosen,

-. the kernel matrix elements and the coordinates of all the subdi-

visions will be listed in the output file. These are basically

intended for debugging purposes. Usually *n" should be the

answer to both requests.

(3) 'wxnz: These are the horizontal or x-direction width of the

trace and its corresponding number of subdivisions. Note that

all the widths and lengths are stored in double precision vari-

ables, so "wxw should be in double precision form. This also

applies to all the other widths in the program.

• .. .

..- V ........-.-..- ,....... •. .............-.. -• .... .....-.-..... ..-.- . . -' .
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(4) 1wy,ny",*vz,nz" These parameters are similar to the previous

ones, except they are in vertical or y direction. mwz,nz" only

appears in the three-dimensional case.

(5) lang: This is the pitch angle for the slant side walls. It

only occurs in the two-dimensional case. The angle should be in

degrees, and within the range of 00 to 900.

(6) Isubdiv method" This concerns the choice of constant- or

variable-length subdivisions. A "0" means constant subdivisions

aand any other integer will result in default Chebyshev variable

subdivisions.

(7) lorientation" : This only occurs in running "CAP3D". It speci-

fies the direction of the trace. For example, a trace which is

parallel to the x-axis has an orientation 1. By the same token,

the orientation is 2 if it is parallel to the y-axis. However,

orientation 3 is prohibited. It should be pointed out that the

charges on the cross sections perpendicular to the orientation

axis of the trace are neglected, i.e., charges at each end of

the line are not computed.

(8) *lolxloly: In "CAP2D", the coordinates of the lower left

corner of the trace are needed.

(9) 'cx,cy,cz" : On the other hand, the coordinates of the center of

the trace are used in "CAP3D".

*. I Note that the above parameters from (3) to (9) have to be fur-

nished for every trace in question.

.................................... *-%.-,..-.
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(10) "enl.en2N These are for the dielectric constants of the media.

Because the outmost layer in the threo-layer case is assumed to

be free space, at most two different dielectric constants need

to be specified. It is important to note that the permittivity

of the free space (8.854xl0- 14 F/cm) is not built into the pro-

grams. Thus, usually the output capacitance values are normal-

ized by this factor. If capacitance values in Farad or F/cm,

depending on three- or two-dimensional problem, are desired,

then the permittivity of the free space should be included in

the dielectric constants.

(11) "a,b,h" These are the heights of the dielectric layers. They

should be double precision numbers. "a" and "b" are for the

case of three layers of media, and it is assumed that b > a.

"H" is the height of the lover dielectric layer in the two-layer

case.

(12) "errbnd" This is the cut-off criterion for the infinite summa-

tion in the two-laer or three-layer Green's functions. l.d-3

is recommended in the program. Yet, bear in mind that a small

Nerrbnd" will render more computations, consume more CPU time,

and result in more accurate answers. This trade-off between

accuracy and computation is also observed in the case of the

choice of the number of subdivisions for the traces.

Uq
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*B.2.2. Outiput

The result of the capacitance computation will be, by default,

stacked in files "fort.7" for OCAP2D" and "fort.9" for "CAP3D. If

these files already exist in the directory, the current output will

be appended to the corresponding files. The report includes all the

pertinent input parameters for the traces and the media. Further-

more, the following parameters are also included

"Number of kernels" indicators the number of elements in the

upper triangular part of the kernel matrix including diagonals. If

the total number of subdivisions is n, then the "number of kernels"

will be n*(n+l)/2. Note also that the kernel matrix will be listed

in "packed symmetric" form if it is requested. In essence, the upper

triangular and the diagonal elements are listed linearly. For exam-

ple, the (i,j)th element (i < j) in the kernel matrix will be the

[jo(j-l)/2+ilth element in the linear list.

"" "Iterne indicates the maximum number of terms taken in the com-

putation of multi-layer kernels. It is dependent on the cut-off cri-

terion "oerrbnd" as discussed previously. And it is 0 for the

single-layer case. Since the do loop index for the three-layer case

o - is set at 12, it has not neccessarily converged if "itera" equals 13.

If divergence is encountered in the summation process, i.e., the

absolute value of the term in the infinite summation is larger than

its predecessor, "ne. of divgut" will be incremented, and the summa-

tion will be terminated. Since this divergence usually occurs at

* vterms with small magnitude (,l.d-2), the current sum can still be a

-%
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reasonable value for the kernel element, and the computation of other

kernel elements will continue.

The parameters "rcond" and "info" are indicators from the "lin-

pack' programs "dppco" and "dppsl" which are utilized to solve the

positive definite kernel matrix. If "info" is other than 0, the

solution is erroneous. It indicates the order of the principal sub-

matrix which is not positive definite. Usually the subdivision at

fault can be detected this way. "Rcond* is the reciprocal of the

condition number of the kernel matrix. Only when it is in the order

of the machine epsilon (about 1.d-14 for double precision on VAX

11/780), then is the linear system ill-behaved and the solution may

be erroneous. Usually this number is within 0.1 and 1.d-5.

The solution vector included in the report represents the even-

mode charges on the subdivisions, i.e., the charge distribution when

all the traces are at a constant positive potential with respect to

the ground plane. It delineates the charge distribution in the sys-

tem and is helpful in gaining a physical understanding of the sys-

tom. Also it serves as a good gause for debugging.

All the self capacitances Cnn and the coupling capacitances,

Cum, n 0m are reported. Note that the accuracy of the computed

capacitances depends on the cutoff criterion "errbnd", the number of

subdivisions and the subdivision method. Also it has been shown in

the literature that the integral method will always result in a lower

bound for the true capacitance value, and the true value is also

-. o

variationally stationary for the first order perturbation. Thus,

-" "
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P, more subdivisions and a tighter "errbnd" will yield larger capaci-

tance values. This characteristic is also very helpful for debug-

Sing, and for the estimation of the true value. Generally in order

to ensure the accuracy of the cenacitances, the same case can be run

with successively more subdivisions on the dimensions of the traces.

- . i Finally, the time usage shows the consumption of CPU time for

* - various computations. 'Kernel set up time" is the time to compute

the kernel elements. It usually takes up the lion's share of the

total user time. Since the "number of kernels" is the total number

of elements computed, it is directly responsible for the "kernel

setup time". "Kernel solve time" is the time spent by "dppco" and

E "dppsl" to solve- the corresponding positive definite 
kernel matrix.

"Capacitance time" is the time spent to obtain the various self and

-" "coupling capacitances from the solution vectors (i.e., charge distri-

butions) of even-mode and odd-mode excitations. This time is usually

the smallest and is negligible for single traces.

The FORTRAN source files are cap3d.f", "subp3dO.f",

+ subp3dl.f*, "subpd2.f" , "subpd3.fM " for the three-dimensional case.

The main program is in "cap3d.f", all the others are subprograms.

* * " subp3dl.f" contains the subprograms for the homogeneous case,

"subp3d2.f" for the two-layer case and so on. The "make" file for

, S .l

.4 -

*-
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ocap3d.ex" is as follows

make file for cap3d.f*

FFLAGS - -u supdosupdosupd. updo
cap3d.ex cap3d.o updo updo up2.sbp3o

comptime .0
f77 -S cap3d.o subp3dO.o subp3dl.o subp3d2.o subp3d3.o

-comptime.o -o cap3d.ex -llinpk

"Cap2d.ex" has a similar *make" file and "source" file structure,

with names changed to 2d, accordingly. The object code "comptime.o"

is the "object" file of the two C procedures which are utilized for

the time usage calculation. "-llinpk" indicates that "linpack" is to

be loaded, and this flag has to be the last flag in the command.

Finally, the output will be in "fort.7" for " cap2d.exl and "fort.9"

for "cap3d.ex".

Wl4 arnings

The calculation of capacitances in three-layer cases is very

computationally intensive, due to the infinite summation and the dou-

ble summation inside. A few hundreds of seconds of CPU time on the

UNIX system is not uncommon for a single trace (see example IV). So

* . run this case cautiously and prudently.

14 Zmzu

In the following are some examples of interconnect systems. The

configurations of interconnects are presented in graphs, and the

interactive sessious of running the programs and the results from the
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V run are also included. Hopefully, these examples will illustrate the

usage of both programs in more detail.

!44. Examp~le I,

Following is the interactive session of running the
program "cap3d" for the traces in Fig. B.1.

%cap3d.ex
number of traces ntrc -2
number of layers nlay =1

want kernel matrix 'y I or In#) ? In#
want grids (' or In) ? 'n#
trace no. 1
orientation (zinl,yuZ) - 1
subdivision (const-0, Chebr'other) -1
x width and no. of div. :wx,nx = 6.5dO 4
y width and no. of div. : wy,ny - 1.3d0 3
z width and no. of div. :wznz - 1.2d0 3
position of center :- cx,cy,cz - O.dO 0.dO l.ldO
trace no. 2
orientation (xil,Y-2) - 2
subdivision (constamO, Cheby-other) = 1
x width and no. of div. :wx,nz 1.8d0 3
7 width and no. of div. :wy,ny -9.dO 4
z width and no. of div. wz,nz -l.7d0 3
position of center : cx.cy,cz - 0.dO 0.dO 3.35d0
dielectric const. : eal. - 4.dO

STOP in tort.9 statement executed

END of the interactive session.

The output from the above session is as follows

*S*three-dimensional, 1-layer, 2-trace 00*** Apr 1 83 00:17:29
* subdivisions :(z, y and z)

.44 2.81 2.81 .44 .19 .92 .19

.18 .85 .18

trace no. 1 with wx - 6.50 nx - 4 wy -1.30 ny - 3
wz - 1.20 nz 3 center at : .000 .000 1.100

* 'orientation :1 subdiv. method :1

subdivisions : (x, y and z)
.26 1.27 .26 .60 3.90 3.90 .60

L- o:7
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Figure 3.1 Thbee-dimnsionalcross-over configuration of two traces.
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.25 1.20 .25

trace no. 2 with wx = 1.80 ax. 3 wy =9.00 ny- 4
wz - 1.70 nz - 3 center at .000 .000 3.350
orientation : 2 subdiv. method 1

i-layer with diel. counst. enl = 4.00

total no. of subsections 96 no. of kernels 4656
item = 0 no. of divgnt 0

areas
.08 .54 .54 .08 .40 2.59 2.59 .40 .08 .54.54 .08 .08 .54 .54 .08 .40 2.59 2.59 .40
.08 .54 .54 .08 .08 .49 .49 .08 .37 2.39

2.39 .37 .08 .49 .49 .08 .08 .49 .49 .08
.37 2.39 2.39 .37 .08 .49 .49 .08 .16 .77
.16 1.03 4.96 1.03 1.03 4.96 1.03 .16 .77 .16
.16 .77 .16 1.03 4.96 1.03 1.03 4.96 1.03 .16.77 .16 .15 .97 .97 .15 .72 4.68 4.68 .72
.15 .97 .97 .15 .15 .97 .97 .15 .72 4.68

4.68 .72 .15 .97 .97 .15

rcoud - .21049453e-01 info 0
solution(even)

• 1.447 6.351 6.351 1.447 5.809 20.83
2,0.83 5.809 1.447 6.351 6.351 1.447
.7007 .6746 .6746 .7007 2.876 .6321
.6321 2.876 .7007 .6746 .6746 .7007
1.210 4.889 4.889 1.210 3.374 6.229
6.229 3.374 .6668 .8890 .8890 .6668
1.210 4.889 4.889 1.210 3.374 6.229
6.229 3.374 .6668 .8890 .8890 .6668
1.277 5.118 1.277 2.299 5.510 2.299
2.299 5.510 2.299 1.277 5.118 1.277
1.016 4.028 1.016 2.639 6.598 2.639
2.639 6.598 2.639 1.016 4.028 1.016
1.196 2.281 2.281 1.196 4.189 6.039
6.039 4.189 .9724 2.594 2.594 .9724
1.196 2.281 2.281 1.196 4.189 6.0396.039 4.189 .9724 2.594 2.594 .9724

no. of traces 2
cap( 1. 1) = 166.0239059 cap( 2. 2) = 140.5242337
cap( 1. 2) = 51.89136663

, *u TIME USAGE kernel setup time : 346.467
kernel solve time : 5.93333
capacitance time .283333
total user time 352.683

-* 4 Zk " 'X ? ; , " " : ; : " ; ?... ' ' ". - " "- .., . " " , . . . -. . , - . , '. , . ; i ''
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***S**S* end of report *S ~~ Apr 1 83 00:27:43

B... Examvle 2

The interactive session and output of running "cap2d" for the
traces in Fig. B.2

* % cap2d.ex
number of traces ntrc - 4
number of layers ul ay - 2
want kernel matrix (0Y' or In') ? #n
want grids ('y' or In') ? In'
trace no. 1
horiz. width and no. of div. :wx,nx - 1.5d0 3
verti. width and no. of div. :wy,ny -. 44d0 3
position of low left corner: lolx,loly =2.dO .38d0
slant angle of the trace :ang (in deg) - 7.Odl
division method (constinO Cheby-other) -1
trace no. 2
horiz. width and no. of div. : wx,nx 1.SdO 3
verti. width and no. of div. : wy~ny -. 44d0 3
position of low left corner: lolx..loly 4.SdO .38d0
slant angle of the trace : ang (in deg) - 7.dl
division method (const-O Cheby-other) - 1
trace no. 3
horiz. width and no. of div. : wx,nx -2.2d0 3

*verti. width and no. of div. :wyny - 1.7d0 3
position of low left corner: lolx~loly =0.dO 2.37d0
slant angle of the trace : ang (in deg) - 7.Sdl
division method (const-0 Cheby-other) - 1
trace no.4:

*horiz. width and no. of div. : wx,nx - 2.2d0 3
verti. width and no. of div. : wy,ny -1.7d0 3
position of low left corner: lolx.loly = 3.2d0 2.37d0
slant angle of the trace : ang (in deg) = 7.Sdl
division method (constinO Cheby-other) - 1
dial. const. of lower layer : eni 4.dO
diel. const. of higher layer: en2 - 7.SdO
interface position : h -1.07d0
relative error bound :errbnd (1.d-3) 1.d-3
STOP in tort.? statement executed

END of the interactive session.

Ceceec. two-dimensional, 2-layer. 4-trace ~~* Apr15 83 01:56:11

trace no. 1 with wx - 1.50 ni - 3 wY = .44 nY = 3
position :2.00 .38 slant angle (deg) : 70.00
subsections :.173 .834 .173 .220 1.061 .220
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Figure B.2 Four two-dimensional traces in two layers of media.
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.069 .331 .069

trace no. 2 with wx =1.50 nx= 3 wy= .44 ny 3
position 4.50 .38 slant angle (dog) 70.00
subsections .173 .834 .173 .220 1.061 .220

.069 .331 .069 22

trace no. 3 with wx - 2.20 ux = 3 wy - 1.70 ny = 3
position .00 2.37 slant angle (dog) 75.00
subsections .189 .911 .189 .322 1.556 .322

.258 1.244 .258

trace no. 4 with wx = 2.20 nx 3 wy = 1.70 ny = 3
position 3.20 2.37 slant angle (dog) 75.00
subsections .189 .911 .189 .322 1.556 .322

.258 1.244 .258

2-layer with brdy h = 1.07 rel errbnd - .100e-02
diel. const. eul(low) = 4.00 en2(top) - 7.50

total no. of subsections 48 no. of kernels 1176
iterm - 7 no. of divgut 0

widths
.22 1.06 .22 .17 .83 .17 .07 .33 .07 .07
.33 .07 .22 1.06 .22 .17 .83 .17 .07 .33
.07 .07 .33 .07 .32 1.56 .32 .19 .91 .19
.26 1.24 .26 .26 1.24 .26 .32 1.56 .32 .19
.91 .19 .26 1.24 .26 .26 1.24 .26

*rcond - .24604396e-01 info - 0
solution(even)
2.9S2 11.14 2.911 .2795 .3718 .1257
1.387 1.317 .2139 1.248 .9462 .1012
2.910 11.14 3.008 .1394 .7297 .5101
1.249 .9512 .1137 1.441 1.565 .3493
1.759 2.804 .1911 .6801 1.291 .3642
1.494 2.748 .7878 .9962e-Ol .2684 .3656
.1260 .7004 .6998 .3601 1.254 .6398
.7113e-O1 .3019 .3588 .8920 2.231 .7506

no. of traces 4
cap( 1, 1) - 23.02923288 cap( 2, 2) - 24.11008633
cap( 3, 3) - 12.85232106 cap( 4, 4) = . 386332101cap( 1, 2) - 1.766451058 cap( 1, 3) - 4.119475070
cap( 1, 4) - 4.522L07157 cap( 2, 3) - .2622865412* cap( 2. 4) - 7.549320560 cap( 3, 4) = 15.43729017

TIME USAGE kernel setup time 198.850
kernel solve time 1.15000
capacitance time .233333
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Ptotal user time :200.233

***s~ee* and of report ***S** Apr15 83 02:03:17

B.5.. Example 3

The interactive session and output of running "cap3d" for the
traces in Fig. B.3

% cap3d.ex
number of traces ntrc 2
number of layers nlay -2
want kernel matrix (0 yI or In#) ? one
want grids ('y' or In') ? #n

F' trace no. 1
orientation (xinl,y=2) - 1
subdivision (const-O. Cheby-other) 1
x width and no. of div. : wx~nx = 5.dO 3
y width and no. of div. : wy~ny - 2.dO 3
z width and no. of div. :wz,nz - 0.dO 0
position of center : cx~cycz - 3.ldO 3.dO 1.2d0
trace no. 2
orientation (x1l,Y-2) -1
subdivision (const-0. Cheby-other) =1
x width and no. of div. : wxnx - 5.dO 3
Y width and no. of div. : wy,ny - 3.dO 3
z width and no. of div. : wz,nz = 0.dO 0
position of center : cx~cy,cz -3.ldO 6.5d0 3.2dO
diel. const. of lower layer : eni 4.dO

* .diel. conat. of higher layer: eu2 -7.5d0
interface Position : h - 2.dO
relative error bound : errbnd (l.d-3) l.d-3

STOP in fort.9 statement executed

END of interactive session.

******three-dimensional, 2-layer. 2-trace $0000* Apr15 83 01:38:41

subdivisions :(x, y and z)
.73 3.54 .73 .29 1.41 .29

trace no. 1 with wx - 5.00 ux - 3 wy - 2.00 ny - 3
* 4wz - .00 nz - 0 center at : 3.100 3.000 1.200

orientation : 1 subdiv. method : 1

subdivisions : (x, y and z)
.73 3.54 .73 .44 2.12 .44
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Etrace no.Z2with wx 5.00 nxi 3 vyin3.00 nyu 3
vi - .00 nz - 0 center at :3.100 6.500 3.200
orientation 1 subdiv. method :1

2-layer with brdy h - 2.00 rel errbnd = .100c-02
diel. const. enl(low) - 4.00 en2(top) 7.50

total no. of subsections : 18 no. of kernels 171
iterm = 6 no. of divgnt 0

areas
.21 1.04 .21 1.04 5.00 1.04 .21 1.04 .21 .32

1.55 .32 1.55 7.50 1.55 .32 1.55 .32

4roond - .53305083.-Ol info - 0
solution(even)
4.092 14.04 4.092 9.938 27.23 9.938
3.553 11.40 3.553 6.053 16.18 6.053
17.37 35.94 17.37 7.045 20.92 7.045

no. of traces 2
cap( 1, 1) - 87.83536715 cap( 2, 2) 133.9861517
cap( 1, 2) - 15.45701657

TIXE USAGE kernel setup time : 65.4833
4"kernel solve time :.183333

capacitance time : .166667ar-Ol
total user time :65.6833

******** and of report ****** Apr15 83 01:42:41

!.i.A.Exanyle 4

The interactive session and the output for the trace in
Fig. B.4

* % cap2d.ex
umber of traces ntrc - 1
number of layers nlay - 3
want kernel matrix (y or In)7
want grids (yl or I') ? 'n

* 'Ntrace no. 1
hon:z. width and no. of div. :wznx - 1.7d0 3
verti. width and no. of div. :wy,ny - l.2d0 3
position of low left corner: lolx~loly - 0.dO .SdO
slant angle of the trace :ang (in deg) 7.5dl



K___________ - V -

162

7i.5

1 2.0
1.2

f.-1.7 -
0.5 4. 40

/

Figure BA4 A two-dimensional trace in three layers of media.
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division method (const-0 Cheby-other) 1
diel. coust. of lower layer :eni. - 4.d0
diel. coust. of higher layer: en2 - 7.5d0

interface positions : a,b (a~b) -0.SdO 2.5d0
relative error bound : errbnd (1.d-3) l .d-2

STOP in tort.? statement executed

EN4D of interactive tession.

*****two-dimensional, 3-layer, 1-trace * Apr15 83 00:02:56

trace no. 1lwithwx - 1.70 nx -3 wyl- .20 ny - 3
position : .00 .50 slant angle (dog) : 75.00
subsections :.155 .747 .155 .249 1.202 .249

.182 .878 .182

to3-layer with bdry heights a - .50 b -2.50
dial coust enl(low) - 4.00 eu2(top) - 7.50
relative errbnd - .100e-01

total no. of subsections : 12 no. of kernels : 78
iterm - 12 no. of divgnt : 0

widths:
.25 1.20 .25 .15 .75 .15 .18 .88 .18 .18
.88 .18

packed syma. matrix ker
.84743o-Ol .20391.-Ol .40871e-O1 .378900-02 .20391.-Ol .84743o-01

*.18020.-Ol .16603e-Ol .11365o-Ol .998896-01 .15007e-O1 .17498e-Ol
.15007e-Ol .47521.-Ol .65681e-01 .11365e-Ol .16603e-Ol .180200-01
.27945e-01 .4752le-01 .99889e-01 .62266e-01 .17036.-Ol .37810e-02
.1938le-01 .15633e-01 .11525e-Ol .88393e-01 .30659e-Ol .18603.-Ol

*.81513c-02 .35820e-Ol .26691.-Ol .18518e-Ol .35191.-Ol .55031.-Ol
.19202.-Ol .16595.-Ol .1056le-Ol .70566.-Ol .3978le-01 .24433e-01
.20815o-Ol .40914e-Ol .95082e-Ol .37810*-O2 .17036e-O1 .62266e-01
.11525e-01 .15633e-01 .19381or-Ol .33764e-02 .77381e-02 .10605e-01
.88393e-01 .81513e-02 .18603e-01 .30659e-Ol .18518e-Ol .26691e-01
.35820.-O1 .77381e-02 .12357a-01 .16755a-01 .3S191e-01 .55031.-Ol
.10561.-Ol .16595e-Ol .19202e-01 .25121.-Ol .40466e-01 .68090e-01
.10605e-O1 .16755e-O1 .22312e-Ol .20815e-01 .40914e-01 .95082e-Ol

*reond - .61052279.-Ol info - 0
solut ion( even)

%2.958 11.40 2.958 .9070 2.174 .9881

3.017 5.438 1.100 3.017 5.430 1.156

no. of traces : 1
cap( 1, 1) - 40.64073429

pZ7
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TIME USAGE kernel setup time : 970.250
kernel solve tiMe .133333
capacitance tima : .000000e+00
total user time :970.383

******.. end of report ****** Apr15 83 00:28:16
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APPSNDIX C

COMPUTATION OF TWO-DIMENSIONAL KERNEL MATRIX ELEMENTS

* . .. Introduction

In reference to Eq. (2.14) the kernel matrix element Aij is a

double integral containing the Green's function, the basis function

*'.. .and the testing function. In order to have a closed form for the

evaluation of these elements, the basis functions are chosen as

pulse-type functions, and the testing functions are the same as the

basis functions for Galerkin's method. Two types of interconnect

side walls are considered in the two-dimensional case, i.e., vertical

"V and slant side walls. Of course, the vertical case can be considered

as a special case of the slant side wall with a pitch of 900. For

the sake of comparison. both cases are considered. Additionally, let

us define a special convention to simplify the expressions of those

closed forms.

*[f(X.Y)] Is,-* 4 -f(a 31y) -f(al-Y) + f(a 4 1y) -f(a,,y) (C-1)

.fx,y) " f(a2 1 0) - f(C 1) -V(21.02)
1GQ1 , Y~i + faCLp 1 ) (C.2)

.7i, where f(x,y) can be any real-valued function, and a., o2, ao, L4 0 1 ,

" " are real constants.

- .4
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2 Vertical Side Wall

For the two-dimensional and vertical side wall case, the basis

functions which divide the perimeter of the cross-section of an

interconnect into subdivisions can generally be categorized into two

groups horizontal pulses and vertical pulses. They are defined as

"(xy) = [ 1/ for x" y

0, otherwise (C.3)

and S.= (x -)

wl+ X.. 
"4

.P'(.y . [1/S. for y7.y yX-,j

0, otherwise (C.4)

and Sj =

Since the "cores" of the two-dimensional Green's functions in

Eqs. (2.15,2.16,2.21,2.22) are logarithmic, the following integrals

result from incorporating the pulses in Eq. (C.3) and Eq. (C.4).

Assume that xj 2 . x+ 2 x yt 2 y~v ,Y 2 y, and A. K are real con-

stants which can also be zeros; moreover, X0 is the abscissa of the

vertical pulse Pv, and yj is the ordinate of the horizontal pulse P .

(1) I dx J'dx' ln[(x-z') + A]

j xi

* Normalizing the pulse amplitude with the pulse width or area,
'j, is essentially the same as using the charge Q as the "state vari-
able" as described in [10]. The advantage is a numerically more
stable kernel matrix.

, . .
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1i~~ (2d-JJy fytdy' ln[A1 + (y+y'+K) j
()1yyl f y

(3) 1 fyjdy j 'dy' ln(A' + (y-yr'+K) 3
y2 Y3  Y7

(4) 1~ - dy f dy' ln [A + (Y-Y'I+A) I]

yi Y,

(5 1xy. fnJdx fytdy' ln((x-xoi)1 + (y!+y'+K)1 ]
I.

a 7 7

(6) 1~ dxI dyt'~ lnC(x-4)1 + (ly!-y'+K) 1

xy3 fX Iy
IjY1

Because of the similarity of the above integrals, the closed-

form expressions for then can be given in terms of the following

functions

F(x.y) -j-(x -yz)ln(x +y') - ' + 2xytan&' X (C.5)22 y

H(xy) -xyln(xz+y') -4xy + 2yat an'--z (C. 6).
y

G(zt,f,a) jf xtan 1l--dx, C 2

O.S[(a2+1 )tanl ~ ax P* > or 020~>a
x = (C.7)

*. .. .SC(a +x )tanl a +axi --- .Lasign(a), a<O<

x: 2



168

where sign(a)-
lal

Note that F(x,y) is an oven function in both variables x,y, while

H(z~y) is an odd function on both variables. The special considera-

tion given to G(Gj,a) as described above is due to the singularity

or branch cut at x-0O.

After some algebraic manipulation, the integrals, I,
yyl'

* etc., can be expressed in terms of Eqs. (C.5,C.6,C.7) as follows

- .(1) -- [Fex,A] xlfx"" x7-x

.-z7+, Xj +'X-+

(2) 1 [aiF(yA) ] yY~ " jY+

y-j++K, y4-+K

(3) 1~ [F(y.A)]Y 14 y-y+

Mi - [Fy,A]Iy-I+
y'Iyt-y-I+K, I y-yt1I*K

(Kln(11 il oA r ) y2+Aaly y *+>yt

(4) 1 (111) interchange y(<->yj, yt<)>yt
~Y4

'a in the above expiession. if yt~yt~

-~J-
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(iv) yjA) 1 1+K y jyK t(y-Y).y.y _y7+K, Yt-2y

2 2 -(KIn(K +A )-2K+2Atan -A_[ _)- + + -

(v) interchange y7<->Y, Y<->Y+

in the above expression, if yt >yi>y->y

,(5) I I ( xy)] I J + 2G(xt-xxj-x@ ,7)

...- Xt-X! - _y;-y +K

(6) 1xy2 = - [[H(x2y)]xx -  + 2G(xj-x x-xY-y+K

• ,lj- yi+K
-. xx. y ,

'i-xi

+ 2G(x-x X7-X! y)l y Ii'

(7) 131.!>

(7) 3 = yi y or Yyj 1 '-

't~x! "7+Kyt-y!+K[unvi Y) + 2G(x t -x!, *-x! y >Y+K
j 1I j IYJ

Xxj-xj y-= K. K

yl>yl )yj

* ~4. Slant Side 'Wall

If the pitch angles of the side walls of the interconnects are

taken into account, assuming that the interconnects are left and

right symmetric, the pulse-type basis functions, be they on the hor-

izontal planes or on the slant side walls, generally can be expressed

r. .
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parametrically with the help of polar coordinates as

P~(~y)- /Aill for zxx.+tcosqj. yinyj+tsflTjj, 0 . t A.I. .3y
0, otherwise (C.7)

Note that (zj.Yj) is the coordinate of one of the end points of the

subdivision, and -j. is the polar angle of the subdivision. This

00angle should be limited within 0 and 3600. A. is the width of this

subdivision, and as in the previous case, it is used to normalize the

0

pulse amplitude. For horizontal subdivisions, the angle 1 0 or
0

180 * Hence, all the subdivisions on the two-dimensional cross-

section of an interconnect can be represented by Eq. (C.7).

As in the previous section, after incorporating the "cores" of

the two-dimensional Green's functions with the pulse in Eq. (C.7),

the following integrals are needed for the evaluation of the kernel

* matrix elements.

(1) I - rdt J'dt' la((x +tcos1i-xi-t'cos~Tl)
0 0

+ (y.+tsiniq.-y.-t'siniq.+k,) I

0(2) 1~ - rdt Jidt' ln((x.+tcos 2x-tcsi

0 0+ r-z-cs1)
+~ ~~3 1Y~3Ul~it'il k)L

*(3) Is - f t Jdt' ln((x.+tcosjxitcTi 2

+(Iy +tsin11j-yi-t'sinil+k.)2 ]



171

(~ ~ where k. is a real constant, and A., A. are the lengths of the jth

and the ith subdivisions in question.

In order to encompass the evaluation of all three of the above

integrals, let us first consider a more general integral, assuming a,

a, b and k, are all real constants.

f Aa a+bt dt' la( +tO~jX-tO~ i)

+. ' (y +tsin~j-i,'i~i-O

A. abt-ka
fidt fa dt' ln(t' +k) C a

*-where k, ast +y

k, ct + TZ(C.8b)

and a -sin(11.- lj) dc -COS(11~-11)

(X (x-x1) sin11i -y-ik~ol

73 (x ix.) cos' 1 i + (y-iks.l (C.8c)

- Furthermore, two more functions are defined to represent the integral

in Eq. (C.8a). They are

-l(b-ac )t4(a-71.)F1( ',) dt (a st4-'r)tan- tC (C.9a)
0
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Fa(Ajoapb) = ~dt [(b-a ct+(a-11)J 1nf(b-a c)t+(a-l )]"+(a t+-Y.±) 2

0

(C. 9b)

Finally, the integral I in Eq. (C.8a) can be writcen in terms of the

above F, and Fz as

I 2F1(A.,a.b) + Fa(A.,a,b) -2FI(A a, 0) -Fa(A.,ao0)

- 2a-a)A. - bA. (C.10)
.3 .

After some lengthy derivation, the integrals in Eq. (C.9) can be

V 2 expressed in closed forms as

+L 71 .) 1 (b-ac)Ai+(a--y)

CL__a______)A ________ aLSY
F1(A.,a,b) =(ii) (-y5A + YA.)tan1 -iz )A+a-a - -Q3 a A.+Y1  2y7j

2 c

+ +
77 2 Y

(tan T$y7 -tan - ),T if y6 I0

Mi (&-Yr2 )A. lnj Y,, if Y7 0 (C.11b)
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F1(A.,a,b) -(ii) [-Lj(b-a )+(a-yrs)AJ Inl 1  + 2ba

fj(l+41(x + __ 1 Af + ((a--y1 )

- -!.(b-.a )][Xln(x 3 + -- r)2+ - a

if 77 0

where Ig (b-a 0 ).Y" (a-y1)a5

y7= ai + (b-a
S C.

-a (b-a)(a-r1 ) + asTI

7,= i+ (a-y1) (C.llc)

Finally, the integrals described at the beginning of this sec-

tion. 1,,, 120 1., can be expressed in terms of the more general

integral I which in turn is an Algebraic combination of closed forms

F1  and F2. Assume that I is a tunction of its variables and can be

.~. written as

I(A a,a,b,xj. l,y.,l.,ko)

6Then 1%, 12 can be written in terms of I as follows.
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()Is,= I(AiDOSA 1 .OX*jz ~ j~jlloo

(2) Is I(AjvO.O *X#Y*M~ j ,yj , ,ko)

Assuming siu-q. 0 and sinqij 0, Is is expressed as

Mi y.> Yi + A sin1i

ii) I~ yj + Ajsinij

(ii Yi+Aisin-qi > yj+Ajsnl and yj 2 y1 and sinnii'

13=I(A., 7YjY 5inl T xyll o

- I(A.A i 5ifliox

(iV) Yi+Aisinli yj+A~jsiilj and yj y1 and sini 0

(V) Y +A siniij I yi+Aisinniand yi 2 and sinijj 0

Is I(Ait 0,yiYv s1 ~ SilQ .fl .0T j

it_____ s inlijy~j

I(Ai'A yi-yi ______p_ i0y P1 i0x oP(.,. siniD i P1u1 DXj.,Y., jk
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fl(vi) y +A sinil 2 yi+A&isin-iand y1  yj and sini- = 0

is I(A.,O,A.A. 2xsyi*l - jy.FTl 0 * -k

(viii) Y+A sinhi~ > y+Ajsinil2 > yj > yjand sinTi ~ 0 and sinh1j 0

I( yi+Ai sinqj Yy il sin

- I(. sinTI - iy s inil
it. AA. ,x. Y 'ti, j 91 o

1iij 3 s isinij ii

+ I(A.jA i sin

thei +ene matrix elmet eias~ni>yj ian d beotin. 0ad i-q

13 Y- 7snS jY

*iq nj 0 iT T xij l,,y Tjsa

a nq*Y -i SIT
(_Y_,__ +A Ai A Xi# itll-p jpj ,j --.

..... .... .... .... ..... .... .... .... ....
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APPKMIX D

- -. EVALUATION OF THREE-DIMENSIONAL KERNEL MATRIX ELEMENTS

fl. Introduction

*Following the same strategy outlined in Appendix C for the two-

dimensional case and employing the same convention in Eq. (C.1,2), we

can evaluate the three-dimensional kernel matrix elements in closed

form as before. However, only the vertical side wall case is cons-

sidered here.

D.2. Formulation

As before, in reference to Eq. (2.14), the pulse type basis

functions on the surface of the interconnects are chosen as

PZ(x.y,Z) j.''i
0, otherwise (D.1a)

/ for y:jY Z7<z z X x.

a L0, otherwise (D.1b)

P~zyz)- 1/Si, for z7 <~ z zt, x- < x .x t, Y =

0, otherwise (D.1c)
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where S. is the area of the subdivision, e.g., Si (tx1-j)( ty- in

Eq. (D.1a). Similarly S. can be obtained for Eq. (D.1b) and

* Eq. (D.1o). The reason for using S. as the normalization factor of

the pulse amplitude is to have a more stable kernel matrix as dis-

cussed in Appendix C. Note that in Eq. (D.1a) x7, xt, yjo yt, are

the bounds of the jth rectangular subdivision, and zo is the ordinate

of this "square" on the z-axis. The pulses described in Eq. (D.1)

are on the planes parallel to the xy, yz, zx planes, respectively, as

the superscripts indicate.

Since the "cores" of the three-dimensional Green's functions in

Eqs. (2.23,2.24.2.29) are of the form

f( [((-x')1+(y-y')14.(z+z'+k,)2
1]1 /3 )

some of the typical integrals that result from incorporating them

with the pulses in Eq. (D.1) are listed in the following

(1) I~-gdx rdx' fYdy fdy' [(x-xo) 2 +(Y-yO) 2 +(Z!-Z!.k )l

j x1 I x1/z2~

(3) 1~ - x J x dz fdz' [(x-x')1+(y!-y)2+(z. k,31

*~~f Iz xjx ~~ 1~zk

@1 Xi Zj z

. ~ ~ t .. . . . . . . . .
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1 1 [xx) g3,. 1/(4) 14 jzdz $ ~dz' rdx fJ-dz'[z!)(y- (-'k,3
1. Zi X. Zi

where k. is a real constant which can also be zero.

Next two closed-form functions are defined such that those

integrals presented above can be expressed in terms of them. They

are

(a +4..3 / + L-L
6 2

+-o1Qi~~ + Asnh 1

-2 s i ~ ( a 1 1 1 ~ z1 /

- (sinh- 1  + asinh-1 a
1 1 1/1(2+43 1/22 (A+~

- aptan' 1
a 1 1/3 D2
+A +4+ (D.2)

- ( (++ 1)/1- psinh'

3

3 (1)/

.~ ~ ~ - +4 . .
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+ 0.54E P1 tanJ' 4+a n-1

a(Ct30a 2)1 /a

+ - 2 tan (.3

- .-It should be pointed out that P(a,4) is an even function on all

three variables, while Q~,04 is an even fuction on the last vari-

able 4 and an odd function on the first two variables a and A.

Finally, adopting the convention in Eqs. (C.1,C.2), we can

express the aforementioned integrals as follows

l~x 1 j [I~pz~4k) Y4-It x~7 ~Yj7

(2 ~ [P(GP~y~4) Xj iZ Jk 1 J 1 + 1 0
au.4-xi x-x, "in j+7+k, zY z4 +

Xj I JL j 1 0

(2) Iz + -~~)
a '' .. x ~- z'i P"Iji'k. jiztk

* -(3) 1. y-y xz' y- +zt+k . zt-t zjxk

caxj -Z O'yj-yj, ~'4-zz+ko z-+zt +k,j i 6'j 10

There are some other possible integrals when incorporating the

three-dimensional Green's functions with the pulses in Eq. (D.1), but

they are all Similar to those just presented. Furthermore, they are

all expressible in terms of the two closed-form functions P and Q.

Therefore, the kernel matrix elements can all be evaluated by the

closed-form expressions described above.

*'
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APPENDII E

SPICE INPUT DECK FOR FULL ADDER I

Shown in the following is the SPICE input deck for "Fpull Adder

Circuit I" with all the interconnect paramters.

full adder circuit I (with cap)
:000 15 16 3.6e+01
rool 16 15 2.0e+01
r002 15 16 5.0e+01
r003 17 18 5.0e+01
r004 17 19 8.6e+01
rOOS 18 17 7.0e+01
r006 17 18 1.0oe+0
COOO 500 0 0.0158pf
r007 21 500 1.5e+01
riOO7 500 22 1.5e+01
cool 501 0 0.OlS8pf
:008 21 501 1.Se+01
r:008 501 23 1.5e+O1
c002 502 0 0.OlS8pf
:009 21 502 1.5@+O1
r009 502 24 1.5e+01
c003 503 0 0.OlS8pf
:010 21 503 1.5e+01
r010 503 25 1.5e+01
c004 504 0 0.0126pf
rOll 26 504 1.5e+01
rrOll 504 27 1.5e+01
coos 505 0 O.0126pf
r012 26 505 1.5e+01
rr012 505 28 1.5e+01
c006 506 0 0.0112pf
r 013 26 506 2.1.-Ol
rr013 506 29 2.le-01
c007 507 0 0.0014pf
:014 29 507 1.5@+01
rrO14 507 30 1.5e+01
coos 508 0 0.0126pf
r 015 31 508 1.5e+01
:rOlS 508 32 1.5e+01
C009 509 0 0.0144pf
r016 31 509 5.4e-'01
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rro16 509 33 5.4e01
C 010 510 0 0.0126pf
r017 31 510 1.5e+01
rrO17 510 34 1.5e+01
COll 511 0 O.Oll6pf
r018 35 511 3.0.+02
rrols 511 18 3.0c+02
c012 512 0 0.0084pf
C019 36 512 2.7s+01
rrO19 512 16 2.7e+01
c013 513 0 0.0087pf
r020 36 513 8.2e+01
rr02O 513 37 8.2e401
c014 504 508 0.0177pf
cols 504 509 0.0211pf
C016 504 510 0.0177pf

a c017 505 508 0.0178pf
cola 505 509 0.0211pf
c019 505 510 0.0177pf
c029 506 508 0.0177pf
c021 506 509 0.0211pf
c022 506 510 0.0177pf
c023 507 510 0.OO0lpf
c024 504 500 0.0210pf
c025 504 501 0.0209pf
c026 504 502 0.0209pf

, c027 504 503 0.0209pf
c02 505 500 0.0209pf
c029 505 501 0.0209pf
c030 505 502 0.0209pf
c031 505 503 0.0210pf
c032 506 500 0.0209pf
c033 506 501 0.0209pf
c034 506 502 0.0209pf
c035 506 503 0.0209pf

-. c036 507 502 0.OO0lpf
c c037 508 513 0.0034pf
c038 509 513 0.0036pf
c039 510 513 0.0031.pf_ mldOOO 5 16 16 0 load 1- 12.00ma w- 2.17um
mldOO1 5 10 10 0 load 1- 8.0Oum w- 2 .25ummldO02 5 18 18 0 load 1- 17.00ma w= 2.24um
mdO03 5 11 11 0 load 1= 10.00um w- 2.20umotOoo 6 25 0 0 drive 1- 2.00am w- 6.Oum
motOOl 7 30 0 0 drive 1- 2.0oum w= 8.0um
mtO02 8 23 0 0 drive lI 2.00um w- 8.00umm "otO03 9 24 0 0 drive 1- 2.0ou. w, 8.OOum
motOO4 16 30 9 0 drive 1- 2.O0um w- 8.O0um
mot005 16 34 8 0 drive 1- 2.O0um w= 8.00ummotO06 15 34 7 0 drive 1- 2 .00um W= 8.0oum
motO07 10 16 0 0 drive 1= 2.00um w= 8.00um

<eo . .-f,- , -- .... . ., . - . , . . , . , . + . - . .. - -, * . . + ... .
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motOO8 11 35 0 0 drive 1= 2.O0ua w- 8.O0um
mot009 12 27 0 0 drive 1- 2.00um v= 8.O0um
motolo 18 32 20 0 drive 1- 2.O0um w- 6.O0um
motoil 17 37 12 0 drive 1- 2.O0ua w- 8.O0um
motO12 18 37 14 0 drive 1= 2.00u w- 8.00um
*otOi3 20 28 6 0 drive 1- 2.00um w- 6.O0um

*motOi4 13 33 0 0 drive 1- 2.00u v= 8.O0um
inotols 19 37 13 0 drive 1- 2.O0ua w- 8.O0ua
inotOi6 14 22 0 0 drive 1- 2.O0u w- 8.O0um
*load capacitances
*sum

Cli 11 0 .lpf
*carry

c12 10 0 lipf
muodel ioad amos vtoin-2. uoB600 level-i lambda-0.02 tox=1.e-7
.model pass UMOS vto-l. uo-600 levelinl lambda=0.02 tox-1.e-7
.model drive ninos vtoinl. uo-600 level-i lambda=0.02 tox=1.e-7
*inputs
v3 32 0 pulse(0 5 120n 0.In 0.in 120n 240n)

* - v2 28 0 pulse(0 5 60n 0.in 0.in 60n 120n)
v1 25 0 pulse(0 5 30n 0.ln 0.in 30n 60n)
vdd 5 0 5
.options ivitimui itl4-20
.tran 3n 240u
.print tran v(25) v(28) v(32) v(ii) v(10)

- - .end

Note that the capacitors numbered from "c014" to "c039" are coupling

capacitances. They are Ocs)mnented out" in the case of only consider-

ing the self-capacitances. For the case of no interconnect parame-

ters, another extraction is done with large parameters "RLIMIT' and

T"CLIXrr specified in "constant.h".
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APPENIXn F

SPICE INPUT DECK FOR FULL ADDER II

- The input SPICE dock for "Full Adder Circuit II" is given in the

following.

full adder circuit II (with capacitance)
rOOO 10 7 3.5e+O1
r002 12 13 6.9.401
r003 12 14 1.0.401
cOOO 500 0 0.Oll4pf
r004 14 500 5.1.400
rr004 500 15 5.1.+00
cool 501 0 0.OlO9pf
rOOS 14 501 5.1.400
rrOOS 501 16 5.1.+00
cO02 502 0 0.Oll4pf

*r006 17 502 4.9e401
*rrOO6 502 18 4.9.401

c003 503 0 0.0335pf
r007 17 503 5.4e+01
rr007 503 19 5.4.401
c004 504 0 0.Oll4pf
r008 -17 504 8.S.-Ol

*rrOO8 504 20 8.6a-02
r009 20 21 1.0.401
c0O5 505 0 0.0316pf

LarOlO 22 505 5.2o+00
rrOlO 505 8 5.2.400
roll 23 24 5.0.401
r0l2 23 25 1l1e402

*r013 23 26 1.0e+02
*r014 27 28 3.0.401

r015 29 28 5.5e+O1
r016 30 31 2.5e401
c006 506 0 0.0427pf

*r017 32 506 2.0.402
rrOl7 506 33 2.0e402

0" 64 c007 507 0 0.0339pf
r018 34 507 3.5.402

~ ..rrOlS 507 6 3.5e402

coog 508 0 0.0043pf
Ar019 35 508 4.5e401
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rrO19 508 31 4.e+01
C009 509 0 0.0144pf
r020 36 509 1.5e+01
rr02O 509 37 1.5e+01
colo 510 0 0.0193pf
r021 36 510 1.5a+01
rrO2l 510 38 1.50+01
Coll 511 0 0.0370pf
r022 36 511 3.2a+02
rr022 511 39 3.2e+02
c012 512 0 0.O065pf
r023 40 512 6.8e+01
rrO23 512 41 6.8e+01
c013 513 0 0.0289pf
r024 40 513 3.0e+02
rr024 513 42 3.0e+02
c014 514 0 0.OlOlpf
r025 40 514 1.1e+02
rr025 514 25 1.1s+02
c015 515 0 0.0296pf
r026 43 515 3.1e+02
rr026 515 44 3.1.+02
c016 516 0 0.0279pf
r027 45 516 9.0e+01
rr027 516 46 9.0e+Ol

, c017 517 0 0.0179pf
r028 42 517 3.0e+01
r rr028 517 47 3.0e+01
c018 518 0 0.0173pf
r029 44 518 1.8e+02
rr029 518 28 1.8e+02
C019 519 0 0.O06Spf
r030 37 519 6.8e+O
rr03O 519 7 6.8e+01
C 020 505 503 0.O011pf
c021 505 506 0.0222pf
c022 505 507 0.0222pf
C023 505 512 0.0229pf
c024 505 513 0.0229pf
c025 505 514 0.0265pf

-. c026 503 506 0.0285pf
c027 503 507 0.0285pf
c028 502 511 0.0030pf
c029 502 513 0.0059pf
c030 503 513 0.0314pf
c031 504 513 0.O030pf
c032 516 507 O.0120pf
c033 506 507 0.0096pf
c034 510 518 0.0175pf
c035 511 517 0.O0$2pf
c036 517 515 0.O052pf

l ' - . ' ' .- - - ,--'-. .- - -. .-- - " "- -.-.- =. ' -, - . - .* - * . - *-.
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c037 500 515 0.0030pf
c038 501 515 0.O030pf

* mldOOO 5 31 31 0 load 1= 14.00um w= 5.7lum
.m*ldO01 5 6 6 0 load 1- 14.OOum w= 5.71m

m1d002 5 8 8 0 load 1- 14.00um w- 5.7lum
mldO03 5 7 7 0 load 1= 14.00um w= 5.7lum
mldO04 5 25 25 0 load 1= 14.00um w- 5.71um
mldO05 5 28 28 0 load 1- 12.00um w- 6.00um
motOo 6 32 0 0 drive 1= 4.00um w- 8.00um
motOol 10 34 0 0 drive 1= 4.0Oum w= 8.00um

* motO02 7 35 0 0 drive 1= 4.00um w= 8.00um
motO03 8 19 0 0 drive 1- 4.00um w= 8.00urm
mot004 21 39 16 0 pass 1= 4.00um w- 4.00um
motOO5 15 41 21 0 pass 1= 4.00um v= 4.00um
motO06 13 43 22 0 pass 1= 4.00um w= 4.00um
mot007 26 45 0 0 drive 1- 4.00um w= 8.OOum

- ' motOO8 24 33 0 0 drive 1- 4.00um w= 8.00um
mot009 27 42 0 0 drive 1= 4.00um w= 12.00um
motolo 5 38 9 0 pass 1= 4.00um w- 4.00um
motoll 18 44 9 0 drive 1- 4.00um w= 4.00um

. mot012 9 47 0 0 drive 1- 4.00um w= 4.00um
motO13 29 37 0 0 drive = 4.00umn W= 8.00m
'mot014 30 46 0 0 drive 1= 4.00um w= 8.00um
*load capacitances
• carry
cli 9 0 .lpf
*sum

c12 14 0 .lpf
* model cards
.model ioad nmos vto--3. uo-600 level-l lambda=0.02 tox=l.e-7
.model pass amos vto-1. uo-600 level=l lambda=0.02 tox=l.e-7
.model drive amos vto-l. uo-600 level=l lambda=0.02 tox=l.e-7
*inputs
v3 19 0 pulse(0 5 120n 0.1n O.1n 120n 240n)
v2 46 0 pulse(O 5 60n 0.1n 0.1n 60n 120n)
vl 32 0 pulse(O 5 30n 0.1n 0.1n 30n 60n)
vdd 5 0 5
.tran 3n 240n
.print tran v(32) v(46) v(19) v(14) v(9)
-end

"6

Note that the capacitances from c020 to c038 are coupling capa-

"-" citances. Some of the interconnect parameters consist of resistances

- only, e.g., rOll to r016, because the capacitances of diffusirn

""" interconnect lines are neglected in the consideration. Other

siderations are the same as in the previous case.

0
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